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Abstract: P-Substituted cyclohexenyl sulfones may be regiospecifically isomerized to either 

endocyclic or exocyclic ally1 sulfones. Epoxidation of these materials followed by a second 

metalation yields y-hydroxy cyclohexenyl sulfones 6 and Z. Subjection of either of these 

materials to a second oxidation/isomerization sequence smoothly provides the bis y- 

hydroxylated cyclohexenyl sulfone lo in excellent overall yield. 

In conjunction with a synthetic project, we required methodology to specifically convert a 
P-methyl cyclohexenyl sulfone (A) to mono (B-endo, and B-exo) and dioxygenated (C) ‘I- 

hydroxy cyclohexenyl sulfone derivatives. 
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Based upon our previous experience,2 we wished to prepare P-epoxy sulfones as 

progenitors for the y-oxygenated targets. This required development of conditions for 

regiospecific metalation at both the endocyclic (H,r) and exocyclic (H,y) gamma positions. 

Reaction of 2-methyl-l -cyclohexenyl phenyl sulfone 1 with 1.0 equivalent of potassium t- 

butoxide in THF containing 0.1 equivalent of t-butanol for 3 h at 25°C smoothly provides 

endocyclic ally1 sulfone 2 in 99% yield. Alternatively, treatment of 1 with 1 .I equivalents of n- 

butyllithium at -78°C for 1 h followed by quenching with saturated ammonium chloride yields 
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exocyclic ally1 sulfone 3 in 97% with no trace of 2 being detected. Epoxidation of these two 

olefins using mCPBA in methylene chloride for 18 h afforded the expected P-epoxy sulfones 4 

(85%; 2:i diastereomers) and 5 (91%; single unassigned diastereomer). 
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2 c. 85% 

\ 

(a) l.Oeq. KOt-Bu, O.leq. t-BuOH, THF, RT (b) i. l.leq. n-BuLi, THF, -78°C ii. aq.NH4CI 
(c) MCPBA, CH2C12, RT 

Treatment of epoxide 4 with 1.0 equivalent of n-butyllithium at -78”C, stirring at 0°C for 2 

h, followed by quenching with saturated ammonium chloride affords & (M=H) in 96% yield3. 

Further treatment of 48 (M=H)s with an additional 2.1 equivalents of n-butyllithium at -78°C 

stirring at 0°C for 2 h, and quenching with saturated ammonium chloride provides 6 in near 

quantitative yield. Alternatively, initial reaction of 3 with 2.1 equivalents of n-butyllithium under 

the same conditions directly afforded 5 in 98% yield. 

In a parallel fashion, treatment of epoxide 5 with 1 .O equivalent of n-butyllithium at -78”C, 

stirring at 0°C for 2 h, followed by quenching with saturated ammonium chloride affords & 

(M=H)s in 95% yield. Further treatment of a (M=H) with an additional 2.1 equivalents of n- 

butyllithium at -78”C, stirring at 0°C for 2 h, and quenching with saturated ammonium chloride 

provides 7 in 97% yield. Once again, simply directly reacting epoxide 5 with 2.1 equivalents of 

n-butyllithium under the above conditions provided Z in 96% yield. 

In both instances, conjugate-addition of the organometallic reagent to the initially formed 

y-oxido vinyl sulfone intermediates (a, a) was a formal possibility, but our previous 

experiences have shown that P-substituted vinyl sulfones undergo y-metalation in preference 

to intermolecular conjugate-addition upon exposure to organolithium reagents.4 
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(d) I. 2.leq. n-BuLI, THF, -79°C to 0°C 11. aq.NH&I 

Epoxidation of allylic alcohols 6 and I using mCPBA in methylene chloride for 20 h at 

room temperature afforded P-epoxy cyclohexyl sulfones & (70%; single unassigned 

diastereomer) and 9 (73%; 3:2 ratio of two diastereomers). Reaction of either epoxide with 2.2 

equivalents of n-butyllithium at -78°C for 2h, slowly warming up to room temperature, and 

quenching with saturated ammonium chloride provided the target dihydroxylated vinyl sulfone 

jQ in excellent yields. 
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1. 94% 

t f. 95% 

(e) MCPBA, CH2C12 , RT; (f) I. 2.2eq. n-BuLI, THF, -78°C to FIT, ii. aq.NH4CI 
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