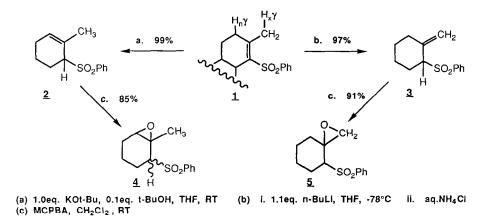
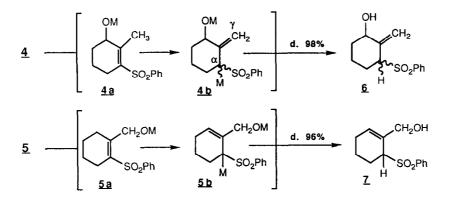

CONTROLLED ENDOCYCLIC AND EXOCYCLIC γ - METALATIONS OF β -SUBSTITUTED CYCLOHEXENYL SULFONES. REGIOSPECIFIC SYNTHESES OF γ -OXYGENATED CYCLOHEXENYL SULFONES.¹

S. W. Lee, P. L. Fuchs^{*} Department of Chemistry, Purdue University, West Lafayette, IN 47907

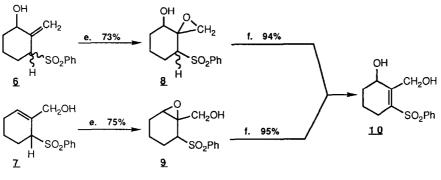

Abstract: β -Substituted cyclohexenyl sulfones may be regiospecifically isomerized to either endocyclic or exocyclic allyl sulfones. Epoxidation of these materials followed by a second metalation yields γ -hydroxy cyclohexenyl sulfones **6** and **7**. Subjection of either of these materials to a second oxidation/isomerization sequence smoothly provides the bis γ hydroxylated cyclohexenyl sulfone **10** in excellent overall yield.

In conjunction with a synthetic project, we required methodology to specifically convert a β -methyl cyclohexenyl sulfone (<u>A</u>) to mono (<u>B-endo</u>, and <u>B-exo</u>) and dioxygenated (<u>C</u>) γ -hydroxy cyclohexenyl sulfone derivatives.

Based upon our previous experience,² we wished to prepare β -epoxy sulfones as progenitors for the γ -oxygenated targets. This required development of conditions for regiospecific metalation at both the endocyclic ($H_{n\gamma}$) and exocyclic ($H_{x\gamma}$) gamma positions. Reaction of 2-methyl-1-cyclohexenyl phenyl sulfone <u>1</u> with 1.0 equivalent of potassium t-butoxide in THF containing 0.1 equivalent of t-butanol for 3 h at 25°C smoothly provides endocyclic allyl sulfone <u>2</u> in 99% yield. Alternatively, treatment of <u>1</u> with 1.1 equivalents of n-butyllithium at -78°C for 1 h followed by quenching with saturated ammonium chloride yields


exocyclic allyl sulfone <u>3</u> in 97% with no trace of <u>2</u> being detected. Epoxidation of these two olefins using mCPBA in methylene chloride for 18 h afforded the expected β -epoxy sulfones <u>4</u> (85%; 2:1 diastereomers) and <u>5</u> (91%; single unassigned diastereomer).

Treatment of epoxide $\underline{4}$ with 1.0 equivalent of n-butyllithium at -78°C, stirring at 0°C for 2 h, followed by quenching with saturated ammonium chloride affords $\underline{4a}$ (M=H) in 96% yield³. Further treatment of $\underline{4a}$ (M=H)⁵ with an additional 2.1 equivalents of n-butyllithium at -78°C stirring at 0°C for 2 h, and quenching with saturated ammonium chloride provides $\underline{6}$ in near quantitative yield. Alternatively, initial reaction of $\underline{4}$ with 2.1 equivalents of n-butyllithium under the same conditions directly afforded $\underline{6}$ in 98% yield.


In a parallel fashion, treatment of epoxide $\underline{5}$ with 1.0 equivalent of n-butyllithium at -78°C, stirring at 0°C for 2 h, followed by quenching with saturated ammonium chloride affords $\underline{5a}$ (M=H)⁵ in 95% yield. Further treatment of $\underline{5a}$ (M=H) with an additional 2.1 equivalents of n-butyllithium at -78°C, stirring at 0°C for 2 h, and quenching with saturated ammonium chloride provides $\underline{7}$ in 97% yield. Once again, simply directly reacting epoxide $\underline{5}$ with 2.1 equivalents of n-butyllithium under the above conditions provided $\underline{7}$ in 96% yield.

In both instances, conjugate-addition of the organometallic reagent to the initially formed γ -oxido vinyl sulfone intermediates (<u>4a</u>, <u>5a</u>) was a formal possibility, but our previous experiences have shown that β -substituted vinyl sulfones undergo γ -metalation in preference to *intermolecular* conjugate-addition upon exposure to organolithium reagents.⁴

(d) i. 2.1eq. n-BuLi, THF, -78°C to 0°C ii. aq.NH4Cl

Epoxidation of allylic alcohols <u>6</u> and <u>7</u> using mCPBA in methylene chloride for 20 h at room temperature afforded β -epoxy cyclohexyl sulfones <u>8</u> (70%; single unassigned diastereomer) and <u>9</u> (73%; 3:2 ratio of two diastereomers). Reaction of either epoxide with 2.2 equivalents of n-butyllithium at -78°C for 2h, slowly warming up to room temperature, and quenching with saturated ammonium chloride provided the target dihydroxylated vinyl sulfone <u>10</u> in excellent yield⁵.

(e) MCPBA, CH_2CI_2 , RT; (f) i. 2.2eq. n-BuLi, THF, -78°C to RT, ii. aq.NH₄CI

Acknowledgements. We thank the National Institutes of Health (GM 32693) for support of this work. We are grateful to A. Rothwell for supplying mass spectra.

References and notes

- ¹Syntheses via vinyl sulfones 43. For a review on this subject, see Braish, T.F., Fuchs, P. L., <u>Chem</u> <u>Rev.</u>, **1986**, <u>86</u>, 903.
- ² (a) Conrad, P.C.; Fuchs, P.L. <u>J. Am. Chem. Soc.</u>, **1978**, <u>100</u>, 346; (b) Saddler, J.C.; Conrad, P.C.; Fuchs, P.L. <u>Tetrahedron Letter</u>, **1978**, 5079; (c) Barton, D.L.; Conrad, P.C.; Fuchs, P.L. <u>Tetrahedron Letter</u>, **1980**, <u>21</u>, 1811; (d) Braish, T.F.; Fuchs, P.L. <u>Chem. Rev.</u>, **1986**, <u>86</u>, 903; (e) Donaldson, R.E.; Fuchs, P.L. <u>J. Am. Chem. Soc.</u>, **1981**, <u>103</u>, 2108; (f) Saddler, J.C.; Donaldson, R.E.; Fuchs, P.L. J. Am. Chem. Soc., **1981**, <u>103</u>, 2110; (g) Saddler, J.C.; Fuchs, P.L. <u>J. Am. Chem. Soc.</u>, **1981**, <u>103</u>, 2112.
- ³ (a) Compound <u>4a</u> may also be prepared in three steps in 48% overall yield from 2-methylcyclohexane-1,3-dione. The first step involves treatment of the dione with 1.5 equivalents of methanesulfonyl chloride in pyridine at room temperature for 2 h to form the β-mesyloxy enone (61%). This enone is reacted with 3.0 equivalents sodium benzenesulfinate in a mixture of NMP and benzene at reflux for 2 h to produce the β-phenylsulfonyl enone (84%). Reduction of this enone with 1.0 equivalent of sodium borohydride in the presence of 1.0 equivalent of cerium trichloride heptahydrate in a mixture of methanol and methylene chloride at -20°C for 30 min provided 93% of <u>4a</u> (M=H).

(b)For a general procedure for syntheses of 3-hydroxy-2-substituted-1-(phenylsulfonyl) cyclohexenes from β -diketones, see J. E. Toth, Ph.D. Thesis, Purdue University ,1986.

- ⁴ (a) Hamann, P.R.; Toth, J.E.; Fuchs, P.L. <u>J. Org. Chem.</u>, **1984**, <u>49</u>, 3865; (b) Toth, J.E.; Hamann, P.R.; Fuchs, P.L. <u>J. Org. Chem.</u>, **1988**, <u>53</u>. 4694.
- ⁵ <u>4a</u>(M=H); ¹H-NMR(200MHz, CDCl₃) δ7.88-7.46(5H, m), 4.01(1H, m), 2.54(1H, s), 2.52- 2.25(2H, m), 2.21(3H, s), 1.78-1.55(4H, m); ¹³C-NMR(50MHz, CDCl₃) δ147.73(e), 141.24(e), 136.72(e), 133.38(o), 129.29(o), 127.31(o), 70.34(o), 30.73(e), 26.67(e), 18.11(e), 17.50(o); HRMS (EI) calculated for M⁺ C₁₃H₁₆O₃S₁ 252.0820, found 252.0818, <u>5a</u>(M=H); ¹H-NMR (200MHz, CDCl₃) δ 7.92-7.47(5H, m), 4.37(2H, d, J=7.26Hz), 3.07(1H, t, J=7.26Hz), 2.41-2.21(4H, m), 1.62-1.51(4H, m); ¹³C-NMR(50MHz, CDCl₃) δ 151.30(e), 140.67(e), 135.89(e), 133.56(o), 129.41(o), 127.37(o), 62.43(e), 31.44(e), 26.13(e), 21.88(e), 21.32(e); HRMS (EI) calculated for M⁺ C₁₃H₁₆O₃S₁ 252.0820, found 252.0818, <u>10</u>; ¹H-NMR(200MHz, CDCl₃) δ 7.92-7.50(5H, m), 4.76(2H, dd, J=22.62, 15.08Hz), 4.45(1H, s), 2.95(2H, broad), 2.45-2.16(2H, m), 1.92-1.58(4H, m); ¹³C-NMR(50MHz, CDCl₃) δ 148.71(e), 140.05(e), 138.60(e), 133.82(o), 129.50(o), 127.55(o), 67.95(o), 60.71(e), 30.32(e), 26.94(e), 18.12(e); HRMS (CI) calculated for (M+H)⁺ C₁₃H₁₇O₄S₁ 269.0848, found 269.0846.

(Received in USA 1 March 1991)