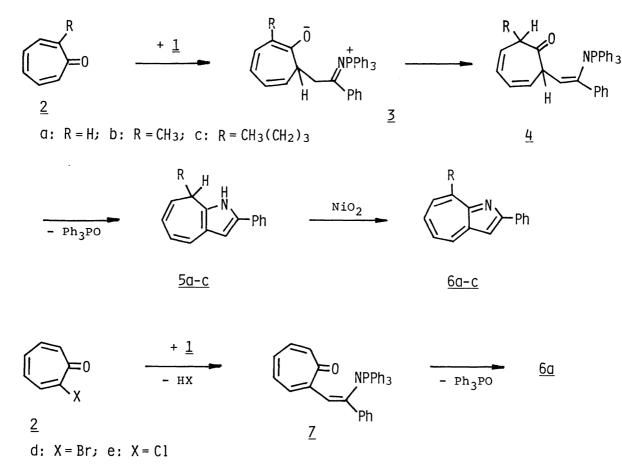
ON THE REACTION OF N-VINYLIMINOPHOSPHORANES. A NOVEL ROUTE TO 1-AZAAZULENE RING SYSTEM UTILIZING AZA-WITTIG REACTION

Makoto NITTA* and Tomoshige KOBAYASHI Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 160

N-(1-Phenyl)vinyliminotriphenylphosphorane, conveniently prepared from α -azidostyrene and triphenylphosphine, readily undergoes an annelation reaction with tropone derivatives to result in the formation of 1-azaazulene ring system.


The reaction of tertiary phosphine with an organic azide to produce an iminophosphorane after nitrogen evolution is known as the Staudinger reaction.¹⁾ The iminophosphorane is known to react with carbonyl compounds to give the corresponding Shiff bases in a Wittig-type (aza-Wittig) reaction.²⁾ However, it is only recently that the synthetic application based on the intramolecular³⁾ and intermolecular⁴⁾ aza-Wittig reaction has appeared. Although no vinyliminophosphorane had been isolated,⁵⁾ we have reported that N-(1-phenyl)vinyliminotriphenylphosphorane (<u>1</u>) (Scheme 1) or N-(1-phenyl)vinyltrimethoxyphosphorane are conveniently prepared in very good yield by the reaction of α -azidostyrene with triphenylphosphine or with trimethyl phosphite in benzene at room temperature.⁶⁾ N-Vinyliminophosphorane has also been shown to undergo cycloaddition reaction with acetylenic esters.

We report hereon a construction of 1-azaazulene skeleton⁷⁾ based on the aza-Wittig reaction utilizing the tropone (<u>2a-e</u>) (Scheme 2) and N-vinyliminotriphenylphosphorane <u>1</u>. Reaction of <u>1</u> (1 mmol) with tropones <u>2a-c</u> (1 mmol) in anhydrous

benzene (5 cm³) under reflux for 24 h resulted in the complete consumption of <u>2a-c</u>. A purification of a mixture in the reaction of <u>2a</u> and <u>1</u> through column chromatography on silica gel caused hydrogen migration of the cycloheptatriene moiety of <u>5a</u> to give three isomers, which are hardly separable. Therefore, the general purification was carried out through column chromatography on Florisil to afford triphenylphosphine oxide (80-90%) and 2-phenyl-8H-cycloheptapyrrole derivatives <u>5a-c</u>.^{8,9)} The results are summarized in Table 1.

The formation of <u>5a-c</u> is best explained by the mechanism shown in Scheme 2. On the analogy of the reaction of tropone with N-ylides,¹⁰⁾ the initial step seems to be the formation of a C-C bond between <u>1</u> and <u>2a-c</u> to give the intermediate <u>3</u>, which undergoes the hydrogen migration to give <u>4</u>. The following intramolecular aza-Wittig reaction of <u>4</u> followed by hydrogen migration constructing a pyrrole ring would give <u>5a-c</u> and triphenylphosphine oxide. Rather low yields of <u>5b</u> and <u>5c</u> would be attributable to the steric factor on the stage of the aza-Wittig reaction.

Oxidation of $\underline{5a-c}$ with selenium dioxide or with DDQ followed by treatment

Scheme 2.

Annelation reaction ^{b)}			Dehydrogenation of <u>5a-c</u>					
Tropone	Product	Yield/%	Product	Mp or Bp	Yield/%			
<u>2a</u>	<u>5a</u>	84	<u>6a</u>	mp 148-149 °C	85			
<u>2b</u>	<u>5b</u>	54	<u>6b</u>	bp 110 °C/67 Pa ^{C)}	74			
<u>2c</u>	$5c^{d}$	34	<u>6c</u>	bp 130 °C/67 Pa ^{C)}	77			
<u>2d</u>	<u>6a</u>	77						
<u>2e</u>	$\underline{6a}^{d}$	44						

Table 1.	Annelation	Reaction	of	Tropone	<u>2a-e</u>	with	1	and	Dehydrogenation	of
	$5a-c^{a}$									

a) With exception of <u>6a</u>, (Ref. 10), all the compounds are new and have been characterized by the physical data⁹⁾ in comparison with those of known derivatives (Ref. 7, 10, and 12). b) No tropone or <u>1</u> was recovered. c) Denote bath temperature. d) Acetophenone, derived from hydrolysis of <u>1</u>, was obtained in 5-20% yields.

with aqueous NaOH gave red-colored 1-azaazulene derivatives $\underline{6a-c}^{8,9)}$ in rather low yields. However, the best yields were obtained on the oxidation of $\underline{5a-c}$ (1 mmol) with nickel peroxide¹¹⁾ (10 mmol) in benzene (5 cm³) under reflux for 2 h followed by purification through TLC on silica gel. The results are listed in Table 1.

Furthermore, one-step preparation of <u>6a</u> was accomplished (Scheme 2). Thus, the reaction of 2-halotropone (<u>2d</u> and <u>2e</u>) (1 mmol) with <u>1</u> (1 mmol) and triethylamine (1 mmol) in anhydrous benzene (5 cm³) under reflux for 24 h afforded <u>6a</u> and triphenylphosphine oxide (85%) (Table 1). In this reaction, the C-C bond formation of <u>1</u> with <u>2d</u> or <u>2e</u> results in an elimination of hydrogen halide to give <u>7</u>, the aza-Wittig reaction of which gives <u>6a</u>.

The present reactions might serve as a convenient route to the 2-phenyl-lazaazulene and its alkyl derivatives. Further studies concerning preparation of unsubstituted l-azaazulene ring system are now in progress.

This work was supported by a Scientific Research Grant from the Ministry of Education, Science and Culture and an Annual Project organized by Waseda University.

References

1) Y. Gololobov, I. N. Zhmurova, and L. F. Kasukin, Tetrahedron, 37, 437 (1981).

- 2) A. W. Johnson, "Ylide Chemistry," Academic Press, New York and London (1966), p. 222.
- 3) L. J. Leyshon and D. G. Saunders, J. Chem. Soc., Chem. Commun., <u>1971</u>, 1608;
 W. Flitsch and E. Mukidjam, Chem. Ber., <u>112</u>, 3577 (1979); T. Sasaki, S. Eguchi, and I. Okano, J. Am. Chem. Soc., <u>105</u>, 5912 (1983); D. M. B. Hickey, A. R. MacKenzie, C. J. Moody, and C. W. Rees, J. Chem. Soc., Chem. Commun., <u>1984</u>, 776.
- 4) J. A. Kloek and K. L. Leschinsky, J. Org. Chem., <u>43</u>, 1460 (1983); L. Bruche,
 L. Garanti, and G. Zecchi, Synthesis, 1985, 304.
- 5) N-Vinyliminotriethoxyphosphorane has been postulated as an intermediate in the conversion of cyclic or acyclic azidoehtylene derivatives to the corresponding carbonyl compounds in the presence of triethyl phosphite: J. B. Hendrickson, K. W. Bair, and P. M. Koehn, J. Org. Chem., <u>42</u>, 2935 (1977).
- 6) T. Kobayashi and M. Nitta, Chem. Lett., 1985, 1459.
- 7) For a recent review of azaazulenes, see T. Nishiwaki and N. Abe, Heterocycles, <u>15</u>, 547 (1981).
- 8) With exception of <u>5c</u>, which is contaminated with acetophenone and is not separable, analytical and mass spectral data are satisfactory for all new compounds described in this paper.
- 9) $\underline{5a}$: mp 112-114 °C (from CCl₄); ¹H-NMR (acetone-d₆) & 3.27 (2H, d, J=6.0 Hz), 5.30-5.55 (1H, m), 5.77-6.05 (2H, m), 6.42 (1H, d, J=2.7 Hz), 6.66 (1H, dxt, J= 10.2, 2.4 Hz), 6.95-7.60 (5H, m). <u>5b</u>: oil; ¹H-NMR (CCl₄) & 1.20 (3H, d, J=7.1 Hz), 3.25 (1H, m), 5.10-5.45 (1H, m), 5.70-6.20 (2H, m), 6.35 (1H, d, J=2.4 Hz), 6.50-6.80 (1H, m), 7.00-7.50 (5H, m), 7.70-8.10 (1H, m). <u>5c</u>: ¹H-NMR (CDCl₃) & 0.80-1.85 (7H, m), 2.10-2.50 (2H, m), 3.05-3.45 (1H, m), 5.40-6.80 (4H, m), 6.46 (1H, d, J=2.5 Hz), 7.00-7.70 (5H). <u>6b</u>: ¹H-NMR (CDCl₃) & 3.20 (3H, s), 7.30-7.70 (6H, m), 7.60 (1H, s), 8.20-8.45 (3H, m); UV (EtOH) λ_{max} (log ε) 240 (4.15), 291 (4.75), 309 (4.58, sh), 357 (4.24), 375 (4.15), 482 (3.50), 526 (3.20, sh) nm. <u>6c</u>: ¹H-NMR (CDCl₃) & 0.80-2.00 (7H, m), 3.72 (2H, t, J=8.2 Hz), 7.10-7.62 (6H, m), 7.60 (1H, s), 8.15-8.40 (3H, m); UV (EtOH) λ_{max} (log ε) 241 (4.24), 290 (4.40), 311 (4.25, sh), 358 (3.92), 387 (3.86), 484 (3.09) nm.
- 10) Y. Sugimura, N. Soma, and Y. Kishida, Bull. Chem. Soc. Jpn., 45, 3174 (1972).
- 11) K. Nakagawa, R. Konaka, and T. Nakata, J. Org. Chem., 27, 1597 (1962).
- 12) K. Yamane, K. Fujimori, J. -K. Sin, and T. Nozoe, Bull. Chem. Soc. Jpn., <u>50</u>, 1184 (1977).