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Abstract: A concise total synthesis of arylomycin A2 has been ac-
complished featuring a key intramolecular Suzuki–Miyaura reac-
tion for the formation of the 14-membered meta,meta-cyclophane
and direct coupling of a fully elaborated peptide side chain with the
macrocyclic core.

Key words: total synthesis, cross-coupling, palladium, macrocy-
cles, antibiotics

Arylomycins are secondary metabolites recently isolated
from Streptomyces Strain Tü 6075 by Friedler, Jung, and
co-workers.1 In 2004, several related lipohexapeptides
and glycopeptides have been added to this family of natu-
ral products.2 They display moderate activity against a se-
ries of Gram-positive and Gram-negative bacteria. Most
importantly, it has been established that these cyclopep-
tides acted as potent inhibitors of bacterial signal pepti-
dase I (SPase I), an enzyme essential for bacterial
viabilitity and growth3 and blocked bacterial protein se-
cretion in vivo leading to bacterial death. This unique
mechanism of action is different from any of the previous-
ly known antibiotics. Consequently, they represent ideal
candidates for the development of new antibiotics to com-
bat bacterial resistance, a field that gained momentum
ever since the emergence of the vancomycin-resistant en-
terococci.4 Structurally, arylomycins are hexapeptides (D-
MeSer-D-Ala-Gly-L-MeHpg-L-Ala-L-Tyr) having a fatty
acid residue attached to the N-terminal amino acid. The
aromatic rings of L-MeHpg and L-Tyr are cross-linked by
an aryl–aryl bond forming a 14-membered meta,meta-cy-
clophane.5 Due to the ring strain associated with this mac-
rocycle, arylomycins can exist as a mixture of two
atropisomers. Interestingly, X-ray crystal structure of an
Escherichia coli SPase-arylomycin A2 complex indicated
that only the P-configured stereomer of the natural prod-
uct was bound to the SPase.6

We have been interested in this type of macrocyclic natu-
ral products and have recently accomplished the total syn-
theses of biphenomycin and RP-66453.7 As a continuation
of this reseach program, we report herein a total synthesis
of arylomycin A2 (1) based on a convergent synthetic
scheme involving an intramolecular Suzuki–Miyaura re-
action and the coupling of the resulting macrocycle with
the fully elaborated peptidic side chain (Scheme 1). Dur-

ing the course of this study, Romesberg et al. reported the
first total synthesis of 1 following a similar strategy.8

Our synthesis began with the preparation of N-methyl D-
4-hydroxy-3-iodophenylglycine (Scheme 2). In order to
minimize racemization of this highly base-sensitive ami-
no acid, we decided to leave the phenol group unprotected
during the synthesis. We reasoned that the formation of
phenoxide could render the a-CH of Hpg less prone to
deprotonation avoiding consequently the racemization.
The N-methyl group was introduced through an oxazoli-
dinone formation–reduction strategy.9 D-Hydroxyphenyl-
glycine (6) was first protected as tert-butoxycarbamate
and subsequently converted into oxazolidinone 8. Iodina-
tion of 8 by the in situ generated trifluoroacetyl hypoiodite
(I2, CF3CO2Ag)10 furnished the desired amino acid 9 in
47% yield, that is readily separated from the bisiodinated
side product. Reduction of the oxazolidinone (Et3SiH,
TFA) followed by reinstallation of the N-Boc function af-
forded the N-Boc-N-MeHpg 1011 in 90% yield.

Synthesis of linear tripeptides 4 and 5 is shown in
Scheme 3. L-N-Boc-3-iodo-4-methoxyphenyl alanate 11
was prepared from L-tyrosine in three steps according to
Joullié.12 Coupling of 11 with L-Boc-alanine proceeded
smoothly to afford 12 in 94% yield (EDC, HOBt, DMF),13

which underwent the palladium-catalyzed cross-coupling
with bis(pinacolato)diboron following Miyaura’s proce-

Scheme 1 Retrosynthetic analysis of arylomycin A2
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dure to provide the corresponding aryl boronate 13.14 N-
Deprotection followed by peptide coupling with 10 (EDC,
HOBt, DMF) furnished the tripeptide 4 in 96% isolated
yield. Finally, methylation of phenol 4 with TMSCHN2

afforded compound 5 in 90% yield.15

With the properly functionalized tripeptide in hand, we set
out to examine the desired macrocyclization by the way of
an intramolecular Suzuki–Miyaura reaction.7,16 We were
concerned with a potential racemization problem associ-
ated with the inherent need of a base in such cross-cou-
pling reaction. Therefore, the study was conducted on
both tripeptide 4 and 5 (Table 1). It was assumed that the
presence of free phenol could, in certain extent, minimize
the epimerization of 4. In the event, treatment of a DMSO
solution of 4 (c 0.02 M, 90 °C) in the presence of
PdCl2(dppf) (0.05 equiv) and K2CO3 (7 equiv) afforded 14
in an encouraging 29% yield (entry 1). Both the solvent
and the palladium source influenced the reaction outcome.
Acetonitrile turned out to be an ineffective solvent for this
reaction, while DMSO or toluene–H2O (30:1) afforded 14
in comparable yield in the presence of PdCl2(SPhos)2 as a
catalyst (entries 5, 6). Addition of (n-Bu)4NBr was detri-
mental to the cyclization (entry 7). Microwave
irradiation17,18 shortened the reaction time, but showed no

significant improvement in terms of product yield (entries
8, 9 vs. 5).

Cyclization of compound 5 was next investigated. Con-
trary to the results obtained in the cyclization of 4, DMSO
(entry 12) was found to be not as good as a mixture of sol-
vent (toluene–H2O, 30:1). When compound 5 was placed
under the best conditions found for phenol 4, [toluene–
H2O (30:1), PdCl2(SPhos)2], two cyclized products were
isolated. The major compound was identical to a sample
prepared through methylation of the phenol-derived mac-
rocycle 14. We therefore asumed that the major product
was the desired macrocycle 15, while the minor one was
an epimer of 15, most probably resulting from the epimer-
ization of N-methyl Hpg unit. Fortunately, when the reac-
tion was conducted in the presence of a weaker base
(NaHCO3, entry 14), the extent of epimerization was re-
duced significantly leading to 15 in 54% yield under this
optimized condition [PdCl2(S-Phos)2, c 0.02 M in tolu-
ene–H2O (30:1), 90 °C, NaHCO3]. Performing the cy-
clization under high-dilution conditions did not improve
the yield of 15 significantly, indicating that 5 may be con-
formationally preorganized for the intramolecular reac-
tion.19

The synthesis of the side chain is depicted in Scheme 4.
According to the strategy adopted for methylation of
arylglycine 10, the N-Boc Ser(OBn) 16 was converted
into oxazolidinone 17, then into the N-methylated deriva-
tive 18 in excellent overall yield. Coupling of 18 with
dipeptide D-Ala-Gly-OMe afforded the tripeptide 19 in
94% yield. Removal of N-Boc function (TFA, CH2Cl2)
furnished the amine, which was acylated by isolauric acyl
chloride,20 generated in situ to provide 20 in 91% yield.

Scheme 2 Synthesis of N-methyl-Hpg 10
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Hydrolysis of methyl ester 20 was performed in the pres-
ence of Me3SnOH21 furnishing quantitatively acid 21.

Coupling of a sterically encumbered secondary amine to a
peptide could be problematic. One solution is the stepwise
elongation of the secondary amine22 and this was indeed a
strategy employed in Romesberg’s synthesis. However,
we found that using DEPBT23 as a coupling reagent, the
reaction of secondary amine 3, obtained quantitatively by
N-deprotection of 15 (TFA in CH2Cl2) with 21 afforded
22 in 83% yield. Finally, global deprotection of 22 under
push–pull conditions (1 M AlBr3 in CH2Br2, excess of Et-
SH) afforded arylomycin A2 (1) in 65% yield. The spec-
troscopic data (1H NMR, 13C NMR, HRMS) of synthetic
material were identical to those reported for the natural
product. As found for natural product, synthetic arylomy-
cin A2 (1) existed as a mixture of atropoisomers/rotamers
in its 1H NMR spectrum.

In summary, we have accomplished a concise total syn-
thesis of arylomycin A2 (1) in a longest linear sequence of
twelve steps from commercially available L-3 iodoty-
rosine in 20% overall yield. Key features of our approach

are: a) formation of 14-membered meta,meta-cyclophane
by an intramolecular Suzuki–Miyaura reaction; b) incor-
poration of N-MeHpg in the cyclization precursor thus
avoiding the difficult and low-yielding N-methylation of
macrocycle; and c) direct coupling of a fully elaborated
peptide side chain to the macrocycle making the synthesis
more convergent. Work is currently in progress towards
the synthesis of members of this family of natural prod-
ucts as well as their analogues.
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