DOI: 10.1002/ejoc.201200344

Remote Control of the C-3–C-4 Double-Bond Epoxidation of a Chiral 1,2-Dihydroquinoline: Application to the Synthesis of (–)-(*R*)-Sumanirole (PNU-95666E)

Ludivine Jean-Gérard,^{[a][‡]} Frédéric Macé,^[a] Anh Ngoc Ngo,^[a] Mickaël Pauvert,^{[a][‡‡]} Hélène Dentel,^[a] Michel Evain,^[b] Sylvain Collet,^{*[a]} and André Guingant^{*[a]}

Keywords: Total synthesis / Nitrogen heterocycles / Asymmetric synthesis / Epoxidation / Hydrogenation

A twelve-step synthesis of (-)-(R)-sumanirole starting from quinoline is described. The first synthetic approach, using a chiral Reissert adduct, was too problematic to be pursued fur-

ther. In the second successful approach, the authors took advantage of the stereoselective epoxidation of a 1,2-dihydroquinoline bearing an Evans' chiral auxiliary at N-1.

Introduction

1,2,3,4-Tetrahydroquinolines (1,2,3,4-THQs) have been the subject of continuous investigations over the years. The marked interest in these compounds is due to the 1,2,3,4-

THQ scaffold being present in the framework of numerous biologically interesting natural products and many important pharmacological drugs. Additionally, free 1,2,3,4-THQs (i.e., not fused to another ring) exhibit a broad range of biological activities. Consequently, synthetic methodolo-

Figure 1. Biologically active 3- and 4-amino-substituted 1,2,3,4-THQs.

- [a] Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS no. 6230,
 2 Rue de la Houssinière, B.P. 92208, 44322 Nantes Cedex 3, France Fax: +33-2-51125402 E-mail: andre.guingant@univ-nantes.fr sylvain.collet@univ-nantes.fr
- [b] Institut des Matériaux Jean Rouxel,
- 2 Rue de la Houssinière, B.P. 92208, 44322 Nantes Cedex 03, France
- [‡] Present address: Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), CNRS UMR5246, Université Lyon 1, Campus de la Doua, Bât. Curien-CPE, 43 Boulevard du 11 Novembre 1918, 69662 Villeurbanne Cedex, France
- [‡‡] Present address: Atlanchimpharma,
- 1 Rue Gaston Veil, 44035 Nantes Cedex, France
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201200344.

gies for preparing diversely substituted 1,2,3,4-THQ derivatives have attracted considerable interest, and several efficient methods have been reported.^[1] With regard to total synthesis, we are interested in 1,2,3,4-THQs bearing an NHR or an NR¹R² substituent at C-3 or C-4. Four selected examples are shown in Figure 1. Sumanirole, [PNU-95666; (*R*)-1] is a highly selective D2 receptor full agonist, which was developed for the treatment of Parkinson's disease and restless leg syndrome.^[2] Anachelin H (2)^[3] is an iron chelator, isolated from the cyanobacterium *Anabaena cylindrica*. The *N*,*N*-dimethylquinolinium chromophore is believed to serve as a tyrosinase activator. Anachelin H also exhibits moderate antibiotic activity against *Moraxella catarrhalis*. Torcetrapib (CP-529414; 3)^[4] was developed to treat hyper-

4240

cholesterolemia and prevent cardiovascular disease. Compound **4** is a strong NMDA (*N*-methyl-D-aspartate) receptor antagonist.^[5]

Because of the relative paucity of 3- and 4-amino-substituted 1,2,3,4-THQs, it is by no means surprising that only few methods for the asymmetric preparation of this class of compounds have been reported so far. The installation of an NHR group at C-3 has been achieved by rhodium-catalyzed asymmetric reduction^[6a] and by Sharpless oxidation^[6a] or Sharpless dihydroxylation^[6b] of a cinnamyl substrate followed by further manipulations to elaborate the 1,2,3,4-THQ skeleton. In the context of the synthesis of sumanirole,^[7] an epoxide group, introduced through a Jacobsen's enantioselective epoxidation of a 1,2-dihydroquinoline, served as a precursor to an NHR group at C-3.^[7b] Two examples of an enantioselective introduction of an NHR group at C-4 were recently disclosed, following an aza-Michael reaction^[4a] and a three-component Povarov reaction,^[4b] respectively. Because of the remarkable pharmacological activities demonstrated by sumanirole (1), we are interested in achieving its synthesis.

Results and Discussions

At the onset of our work, chiral Reissert adduct $7^{[8]}$ was to be used as a possible starting point. We believed that the cyano group could control the stereochemistry of the double-bond epoxidation and then be reductively removed later in the synthesis, as such or in the form of a closely matched derivative (e.g., a carboxylic acid). Indeed, preliminary investigations showed that epoxidation of Reissert adducts *rac*-8a^[9] and *rac*-8b^[10] selectively led to single epoxides 9a and 9b, which could be further reduced to alcohols 10a and 10b, respectively. Epoxide 9a could also be opened to produce 1,2-diol 11, whose structure was firmly established by single-crystal X-ray diffraction analysis (Scheme 1 and Figure 2).^[11–13] Additionally, ester 13,^[14] derived from 8a through amide 12,^[15] afforded, under the action of *m*CPBA (*meta*-chloroperbenzoic acid), single epoxide 14, which was subsequently opened through hydrogenolysis in methanol to give compound 15.^[16]

Figure 2. X-ray crystal structure of 11.

On the basis of these preliminary observations, the retrosynthesis in Scheme 2 was first devised. Thus, sumanirole (1) could result from the cyclization of diaminocarbamate 16, the latter being prepared from aminocarbamate 17. At this juncture of the analysis, two routes could be followed. One featured the substitution of mesylate 18 with inversion of its configuration, and the other displayed the regioselective ring opening of aziridine 19. Also, regardless of the

Scheme 1.

Scheme 2.

route chosen, access to 17 would require the removal of the CN group. Finally, mesylate 18 and aziridine 19 could each be derived from Reissert adduct 7.

Alcohol *rac*-10b was initially chosen to test the feasibility of Route a. Treatment of 10b with mesyl chloride in the presence of NEt_3 did not afford the expected mesylate 20, but instead gave an inseparable mixture of dihydroquinolines 21 and 8b as shown in Scheme 3.

The facile elimination of MsOH from mesylate **20** led us to abandon this route and envisage the formation of amine **17** through the selective ring opening of a protected aziridine (Scheme 2, Route b). Aziridination could be envisaged in one operation by a metal-catalyzed nitrogen atom transfer from a nitrene precursor. Using the conditions reported by Evans,^[17] that is, using [*N*-(*p*-tolylsulfonyl)imino]phenyliodinane as the nitrene precursor and Cu(acac)₂ as the metal catalyst, we were pleased to observe that Reissert adducts *rac*-**8a** and *rac*-**8b** were stereoselectively transformed into single aziridines **22a** and **22b**, respectively (Scheme 4). In a similar manner, we also prepared aziridine **22c** by action of the nitrene precursor $PhI=N-Ses^{[18]}$ on Reissert adduct **8b**. The *anti* disposition between the aziridine ring and the cyano substituent was confirmed by X-ray single-crystal analysis of aziridine **22a**.^[19]

We next explored the conditions for the ring opening of aziridines **22b** and **22c** to give the corresponding monoprotected primary amines and the conditions for the subsequent transformation to install an NHMe substituent at C-3. The hydrogenolysis of aziridine **22b** was cleanly effected in the presence of palladium hydroxide to give amine **23** (Scheme 4). In contrast, under a variety of neutral conditions, aziridine **22c** was reluctant to undergo hydrogenolysis. However, **22c** was regioselectively opened in the presence of HCl to give either compound **24** or **25**, depending on the nature of the solvent (Scheme 5). Amine **25** also easily underwent *N*-methylation to give **26**.

Scheme 4.

Scheme 5.

Although these exploratory studies were rather encouraging, we experienced failure when we tried to deprotect amines 23 and 26, as all of the processes were clearly incompatible with the presence of the cyano group. Moreover, and for no obvious reasons, we observed that chiral Reissert adduct 7, in contrast to rac-8a and rac-8b, failed to react with PhI=NTs/Cu(acac)₂. Finally, these setbacks led us to abandon the Reissert adduct based strategy and consider another route to sumanirole.

Thus, we were interested to discover if the epoxidation of chiral 1,2-dihydroquinoline 32 could be achieved with reasonable diastereoselectivity, despite the fact that the location of the chiral auxiliary in 32 is remote to the electrophilic C-3-C-4 double bond. If so, the resulting epoxide would be a useful intermediate for the synthesis of sumanirole. Anticipating a good result, a new strategy to reach (R)-1 was then devised (Scheme 6).

Retrosynthetically, it was envisaged that (R)-1 could be derived from diamine 27, which in turn could be obtained through the reduction of an appropriately functionalized tetrahydroquinoline such as 28, which could be derived from mesylate 29. Access to 29 could be devised from alcohol 30, which could be obtained from 31 by a regioselective opening of the epoxide ring and removal of the oxazolidinone moiety. Finally, the preparation of 31 could be envisaged through a diastereoselective epoxidation of chiral 1,2-dihydroquinoline 32, prepared from quinoline.^[20] Following this strategy, the preparation of the 1,2-dihydroquinoline 32 was first considered. Inspired by an early work of Minter and Slatter,^[21] who reported the 1,2-reduction of quinoline along with subsequent trapping of the aminoalane intermediate by using a large excess amount of methyl chloroformate, quinoline was first treated with 1 equiv. of DIBAL-H (diisobutylaluminum hydride) for 1 h. Then, the resulting red solution of aminoalane 33 was added by syringe to a solution of chiral carbamoyl chloride 34^[22] in dichloromethane maintained at 0 °C. The best result was obtained when 34 was used as the limiting reagent (0.5 equiv.). In that case, the connection of the (S)-4-benzyl-2-oxooxazolidin-3-carbonyl and 1,2-dihydroquinoline fragments to give 32 was achieved in approximately 60% yield (Scheme 7).

Scheme 6.

FULL PAPER

With the 1,2-dihydroquinoline **32** in hand, the key epoxidation reaction could now be examined. We were pleased to observe that the treatment of **32** with 1 equiv. of *m*CPBA led to a mixture of diastereomeric epoxides **31** and **35** in a ratio as high as 9:1 (Scheme 8). The addition of sodium hydrogen carbonate as a buffering agent was crucial to trap the *meta*-chlorobenzoic acid formed during the reaction, thereby avoiding its subsequent addition to the epoxide products. After chromatographic separation, the stereochemistry of the major epoxide **31** was fully ascertained by X-ray single-crystal diffraction.^[20]

However, from a practical point of view, we found it preferable to first hydrogenate the epoxide mixture and subsequently separate the resulting mixture of alcohols. Following this protocol, alcohol **36** was isolated in 54% yield from 1,2-dihydroquinoline **32** (Scheme 8). At this juncture, we decided to perform the OH \rightarrow NHMe transformation at a later stage in the synthesis and, instead, to concentrate first on the construction of the imidazolone ring. The direct installation of an amino group at C-8 through nitration was unrealistic, because the most nucleophilic center for the SEAr (electrophilic aromatic substitution) reaction of **36** would be C-6. It appeared necessary to temporarily protect this carbon atom, and a bromination/nitration sequence^[23] was envisaged. Before applying this protocol, the chiral auxiliary in **36** was removed by treatment with samarium triflate in methanol^[8] to give 1,2-dihydroquinoline 30. The bromination of 30 proceeded well to give the expected 6-bromo derivative 37, which was then submitted to the action of HNO₃ in TFA (trifluoroacetic acid) to afford the 6-bromo-8-nitro-1,2-dihydroquinoline 38 in about 70% yield over the two steps. At this stage, we suspended the imidazolone ring construction and returned to the installation of the NHMe group at C-3. Alcohol 38 was treated with mesyl chloride to give mesylate 29, which was then transformed into azido compound 28 through the action of NaN₃ in DMF (N,N-dimethylformamide). At this point, our expectation was that reduction of both the azido and nitro groups as well as the hydrogenolysis of the C-Br bond would be effected in a single chemical operation. To our delight, the hydrogenation of 28 in the presence of Pearlmann's catalyst delivered diamino compound 27 in almost quantitative yield (Scheme 9).

The transformation of 27 into sumanirole could then been achieved in three additional steps. The final construction of the imidazolone ring was achieved by treatment of 27 with an excess amount of *t*BuOK in THF (tetrahydrofuran). The resulting amine 39 was first transformed into its formamide 40, which was then reduced with the BH₃·SMe₂ complex to afford sumanirole [(R)-1], isolated as its hydrochloride (Scheme 10).

Scheme 9.

Scheme 10.

Conclusions

We have achieved the synthesis of sumanirole in twelve steps starting from quinoline. A key feature of our synthesis is the diastereoselective epoxidation of the C-3–C-4 double bond in 1,2-dihydroquinoline **32**, in spite of the fact that the chiral *N*-acyloxazolidinone auxiliary is remotely situated. Another remarkable feature is the concomitant transformation of three different groups under hydrogenation conditions. Recent studies in our laboratory have shown that other electrophilic additions to the C-3–C-4 double bond of **32** could be accomplished diastereoselectively. On the basis of experimental work and theoretical calculations, an explanation also emerged for the stereochemical preference. The results of these studies will be reported in a near future.

Experimental Section

(S)-4-Benzyl-3-(1,2-dihydroquinoline-1-carbonyl)oxazolidin-2-one (32): A solution of DIBAL-H (1 M solution in hexane, 13.6 mL, 13.6 mmol) was added dropwise to a solution of quinoline (1.6 mL, 14 mmol) in CH₂Cl₂ (18 mL) at 0 °C under argon. The stirring was continued at 0 °C for 1 h, and then the red solution was cannulated into a solution of carbamoyl chloride 34 (1.63 g, 6.8 mmol) in CH₂Cl₂ (2 mL) that was precooled to 0 °C. The resulting solution was stirred for 4 h, as the temperature was raised progressively to 20 °C. The reaction mixture was then cannulated into water (150 mL) at 0-5 °C. The resulting emulsion remained, as stirring was continued for 30 min, and then the mixture was acidified to pH = 4 with HCl (4 N solution). After phase separation, the aqueous phase was extracted with dichloromethane $(4 \times 60 \text{ mL})$. The combined organic layers were washed with brine, dried with MgSO₄, and concentrated in vacuo. The resulting crude oil was subjected to flash column chromatography (toluene/petroleum ether/diethyl ether, 2:1:1; $R_f = 0.26$) to give compound 32 (1.39 g, 61%, calculation based on carbamoyl chloride 34) as a clear yellow oil. $[a]_{D}^{20} = +7.7 \ (c = 0.5, \text{ CHCl}_3)$. ¹H NMR (300 MHz, CDCl₃): δ = 7.12-7.40 (m, 9 H), 6.59 (dd, J = 9.6, 2.4 Hz, 1 H), 5.99-6.04(m, 1 H), 4.73-4.78 (m, 1 H), 4.40 (dd, J = 17.0, 5.5 Hz, 1 H), 4.08–4.31 (m, 3 H), 2.92 and 3.26 (ABX system, J = 13.5, 8.7, 3.3 Hz, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 153.3, 152.4, 136.0, 134.9, 129.5 (2 C), 129.2, 129.0 (2 C), 128.5, 128.3, 127.5, 126.7, 126.4, 125.5, 122.9, 67.0, 56.5, 45.9, 38.1 ppm. IR (KBr): v = 1722, 1685, 1601–1454, 1090, 1060 cm⁻¹. MS (EI): m/z (%) = 334 (<1) [M]⁺⁻, 130 (100), 91 (19). HRMS (EI): calcd. for C₂₀H₁₈N₂O₃ [M]⁺ 334.1317; found 334.1313.

(S)-4-Benzyl-3-[(1aR,7bS)-1a,2,3,7b-tetrahydrooxireno[2,3-c]quinoline-3-carbonyl]oxazolidine-2-one (31): To a solution of the 1,2-dihydroquinoline **32** (1.6 g, 4.78 mmol) in CH₂Cl₂ (250 mL) at 20 °C were successively added sodium hydrogen carbonate (0.644 g, 6.22 mmol) and mCPBA (70-75% pure, 1.5 g, 6.22 mmol). The reaction mixture was stirred at 20 °C for 18 h under a continuous flow of argon and then washed with saturated aqueous sodium hydrogen carbonate (250 mL). After phase separation, the aqueous phase was extracted with dichloromethane $(3 \times 160 \text{ mL})$. The combined organic layers were washed with brine, dried with MgSO₄, and concentrated in vacuo to give a white powder consisting of a mixture of the two diastereomeric epoxides 31 and 35 in a 9:1 ratio. The major diastereomer 31 was isolated in pure form, after the mixture was subjected to silica gel column chromatography $(CH_2Cl_2/AcOEt, 9:1; R_f = 0.33); m.p. 204-206 \text{ °C}. [a]_D^{20} = +54.2 (c)$ = 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.15–7.53 (m, 9 H), 4.57–4.75 (m, 1 H), 4.13 and 4.29 (ABX system, J = 9.0, 8.8, 8.4 Hz, 2 H), 3.98 (d, J = 4.2 Hz, 1 H), 3.90–3.92 (m, 1 H), 3.55 and 4.38 (AB system, J = 14.4 Hz, 2 H), 2.93 and 3.16 (ABX system, J = 13.8, 8.4, 3.0 Hz, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 153.9 (2 C), 136.3, 134.7, 129.8 (2 C), 129.3, 129.0 (2 C), 127.4, 126.4, 125.9, 124.9, 66.7, 58.2, 56.4, 50.9, 44.0, 36.9 ppm. IR (KBr): $\tilde{v} = 1774, 1675, 1600-1438, 1118, 1066 \text{ cm}^{-1}$. MS (EI): m/z (%) = 350 (7) [M]⁺⁻, 322 (100), 174 (8). HRMS (EI): calcd. for C₂₀H₁₈N₂O₄ 350.1267; found 350.1266.

(S)-4-Benzyl-3-[(S)-3-hydroxy-1,2,3,4-tetrahydroquinoline-1carbonylloxazolidin-2-one (36): Pd/C (10%, 0.668 g) was added to a solution of crude epoxides 31 and 35 (1.7 g) in a mixture of CH₂Cl₂/AcOEt (1:1). The mixture was stirred under hydrogen (8 bar) for 18 h and then filtered through a pad of Celite. The filter cake was rinsed with CH₂Cl₂/AcOEt (1:1), and the filtrate was concentrated in vacuo. The resulting crude product was purified by silica gel column chromatography (AcOEt/petroleum ether, 1:1; $R_{\rm f}$ = 0.39) to give alcohol 36 (0.900 g, 54%) as white crystals; m.p. 137–138 °C. $[a]_D^{20} = -170.1$ (*c* = 0.34, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.00, 7.40 (m, 9 H), 4.80 (m, 1 H), 4.28 (m, 1 H), 4.11 and 4.24 (ABX system, J = 8.4, 8.4, 7.5 Hz, 2 H), 3.38 and 4.41 (ABX system, J = 12.6, <1, <1 Hz, 2 H), 2.99 and 3.15 (ABX system, J = 18.0, 5.4, <1 Hz, 2 H), 2.85 and 3.60 (ABX system, J = 12.9, 10.2, 3.6 Hz, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 154.1, 152.9, 138.0, 133.9 (2 C), 129.4, 128.1 (2 C), 128.0, 126.5, 125.2, 124.2, 120.3, 67.2, 62.9, 55.2, 50.6, 37.0, 34.7 ppm. IR (film): $\tilde{v} = 3452, 1772, 1683, 1604, 1583, 1493, 1455, 1220, 1074 \text{ cm}^{-1}$. MS (EI): m/z (%) = 323 (9) [M]⁺⁺, 132 (38), 130 (38), 118 (20), 117 (16), 91 (100). HRMS (EI): calcd. for C₂₀H₂₀N₂O₄ 352.1423; found 352.1427.

Methyl (3S)-3-Hydroxy-3,4-dihydroquinoline-1(2H)-carboxylate (30): Samarium triflate (0.569 g, 0.95 mmol) was added to a solution of alcohol 31 (1.34 g, 3.80 mmol) in anhydrous methanol. The mixture was stirred at 80 °C for 2 h and then filtered through a pad of silica. The filter cake was rinsed with AcOEt, and the filtrate was concentrated in vacuo. The resulting crude product was purified by

silica gel column chromatography (petroleum ether/diethyl ether, 1:4; $R_f = 0.5$) to give alcohol **30** as a clear yellow oil. $[a]_D^{00} = +6.0$ (c = 0.10, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.67$ (d, J =8.2 Hz, 1 H), 7.18 (t, J = 8.2 Hz, 1 H), 7.11 (d, J = 8.2 Hz, 1 H), 7.06 (t, J = 8.2 Hz, 1 H), 4.31 (m, 1 H), 3.82 (d, J = 4.6 Hz, 2 H), 3.80 (s, 3 H), 2.82 and 3.10 (ABX system, J = 16.3, 5.2, 5.2 Hz, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 155.8$, 137.5, 129.5, 126.7, 126.3, 124.3, 123.8, 65.0, 53.1, 50.5, 36.0 ppm. IR (film): $\tilde{v} =$ 3429, 1699, 1600, 1582, 1463, 1441 cm⁻¹. MS (EI): m/z (%) = 207 (100) [M]⁺⁺, 178 (20), 147 (36), 130 (41), 118 (59), 91 (57), 77 (22). HRMS (EI): calcd. for C₁₁H₁₃NO₃ 207.0895; found 207.0894. Note: (4*S*)-4-benzyloxazolidin-2-one was recovered with a yield of 66%.

Methyl (3S)-6-Bromo-3-hydroxy-3,4-dihydroquinoline-1(2H)-carboxylate (37): To a solution of alcohol 30 (0.228 g, 1.39 mmol) in acetic acid were successively added anhydrous AcONa (0.214 g, 1.88 mmol) and Br₂ (0.071 mL, 1.39 mmol). The mixture was stirred at 20 °C for 1 h and then quenched with water (30 mL). The resulting solution was extracted with CH_2Cl_2 (2×30 mL). The combined organic layers were dried with MgSO₄ and concentrated in vacuo. The residue was dissolved in cyclohexane, and the solution was concentrated in vacuo to azeotropically remove the traces of AcOH. The crude bromo alcohol **37** (orange, amorphous solid) was used in the next step without further purification. $[a]_{D}^{20} = -11.0$ $(c = 0.33, \text{CHCl}_3)$. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.56$ (d, J =8.7 Hz, 1 H), 7.24–7.30 (m, 2 H), 4.28 (m, 1 H), 3.79 (s, 3 H), 3.71– 3.88 (m, 2 H), 2.78 and 3.05 (ABX system, J = 16.8, 5.1, 2.8 Hz, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 155.6, 136.7, 132.0, 129.6, 128.8, 125.4, 117.1, 64.4, 53.3, 50.32, 35.7 ppm. IR (KBr): v = 3413, 1709, 1600, 1580, 1486, 1442, 817 cm⁻¹. MS (EI): m/z (%) = 285/287 (100) [M]⁺⁻, 117 (58), 90 (20). HRMS (EI): calcd. for C₁₁H₁₂BrNO₃ 285.0001; found 285.0001.

Methyl (3S)-6-Bromo-3-hydroxy-8-nitro-3,4-dihydroquinoline-1(2H)-carboxylate (38): To a solution of sodium nitrate (0.041 g, 0.48 mmol) in trifluoroacetic acid (2 mL) was added bromo alcohol 37. The resulting solution was stirred at 20 °C for 30 min and then concentrated in vacuo. AcOEt (20 mL) and water (10 mL) were then added to the residue. After separation, the organic layer was washed sequentially with saturated aqueous sodium hydrogen carbonate (10 mL), NaOH (1 M solution, 10 mL), and water (10 mL), dried with MgSO₄, and then concentrated in vacuo. The crude product was purified by silica gel column chromatography $(CH_2Cl_2/AcOEt, 3:2; R_f = 0.5)$ to give nitro compound **38** (0.132, 84%) as a white solid; m.p. 123 °C. $[a]_{D}^{20} = +25.4$ (c = 0.41, CHCl₃). ¹H NMR (400 MHz, C_6D_6): δ = 7.64 (d, J = 2.4 Hz, 1 H), 6.84 (d, J = 2.4 Hz, 1 H), 3.59, (m, 1 H), 3.38 (s, 3 H), 3.30 (m, 2 H), 2.16 and 2.23 (ABX system, J = 16.4, 5.2, 4.8 Hz, 2 H) ppm. ¹³C NMR $(100 \text{ MHz}, C_6 D_6)$: $\delta = 154.9, 145.1, 136.0, 134.0, 131.3, 126.1,$ 117.3, 65.1, 53.1, 50.7, 35.6 ppm. IR (film): $\tilde{v} = 3441$, 1700, 1601, 1528, 1471, 1452, 1441, 1370 cm⁻¹. MS (EI): m/z (%) = 330/332 (8) [M]⁺⁻, 284/286 (66), 201 (48), 173 (51), 117 (100). HRMS (EI): calcd. for C₁₁H₁₁BrN₂O₅ 329.9851; found 329.9854.

Methyl (3*S*)-6-Bromo-3-[(methylsulfonyl)oxy]-8-nitro-3,4-dihydroquinoline-1(2*H*)-carboxylate (29): To a stirred solution of alcohol 38 (0.282, 0.85 mmol) in anhydrous CH_2Cl_2 (16 mL) kept at 20 °C under nitrogen (16 mL) were successively added freshly distilled NEt₃ (0.360 mL, 2.56 mmol) and mesyl chloride (0.132 mL, 1.71 mmol). After stirring was continued for 45 min, CH_2Cl_2 (90 mL) was added to the reaction mixture, which was then washed sequentially with saturated aqueous sodium hydrogen carbonate and brine, dried with MgSO₄, and concentrated in vacuo. The crude product was purified by silica gel column chromatography (CH₂Cl₂/AcOEt, 9:1; $R_f = 0.46$) to give mesylate **29** (0.320 g, 92%) as a yellow solid; m.p. 160 °C. $[a]_D^{20} = +34.0$ (c = 0.20, CHCl₃). ¹H NMR (400 MHz, C₆D₆): $\delta = 7.62$ (s, 1 H), 4.74 (s, 1 H), 4.66 (m, 1 H), 3.90 (br. s, 1 H), 3.36 (br. s, 2 H), 2.20 and 2.47 (ABX system, J = 12.6, 3.3, 3.0 Hz, 2 H), 2.19 (s, 3 H) ppm. ¹³C NMR (100 MHz, C₆D₆): $\delta = 154.1$, 145.0, 135.8, 132.0, 131.0, 126.6, 117.7, 73.1, 53.1, 48.1, 38.2, 33.5 ppm. IR (KBr): $\tilde{v} = 1721$, 1601, 1528, 1471, 1460, 1452, 1310–1350, 1369, 1170 cm⁻¹. MS (EI): m/z (%) = 408/410 (13) [M]⁺⁺, 362/364 (88), 207/209 (57). HRMS (EI): calcd. for C₁₂H₁₃BrN₂O₇S 407.9627; found 407.9630.

Methyl (3R)-3-Azido-6-bromo-8-nitro-3,4-dihydroquinoline-1(2H)carboxylate (28): To a solution of mesylate 29 (0.250 g, 0. 61 mmol) in anhydrous DMF (11 mL) kept at 20 °C under nitrogen was added sodium azide (0.199 g, 3.06 mmol). The resulting solution was stirred at 20 °C for 1 h and then quenched with water (50 mL). After separation, the aqueous phase was extracted with Et₂O $(2 \times 50 \text{ mL})$. The combined organic layers were dried with MgSO₄ and then concentrated in vacuo. The crude product was purified by silica gel column chromatography (petroleum ether then petroleum ether/Et₂O, 3:2; $R_{\rm f} = 0.34$) to give azide **28** (0.140 g, 65%) as an orange oil. $[a]_{D}^{20} = +58.4$ (c = 0.51, CHCl₃). ¹H NM R (400 MHz, C_6D_6): $\delta = 7.63$ (s, 1 H), 6.73 (s, 1 H), 3.50 (br. s, 2 H), 3.38 (s, 3 H), 3.04 (m, 1 H), 2.02 and <math>2.08 (ABX system, J = 17.0, 5.2, 5.2 Hz), 2 H) ppm. ¹³C NMR (100 MHz, C₆D₆): δ = 154.6, 145.6, 136.0, 133.2, 131.6, 127.0, 117.8, 56.0, 53.6, 48.1, 32.9 ppm. IR (KBr): v = 2106, 1717, 1539, 1363 cm⁻¹. MS (EI): m/z (%) = 355/357 (31) [M]⁺⁺, 309/311 (42), 209/211 (35), 89/90 (100). HRMS (EI): calcd. for C₁₁H₁₀BrN₅O₄ 354.9916; found 354.9923.

Methyl (3R)-3,8-Diamino-3,4-dihydroquinoline-1(2H)-carboxylate (27): $Pd(OH)_2/C$ (20%, 0.025 g) was added to a solution of azide 28 (0.2 g, 1. 52 mmol) in ethanol (13 mL), and the resulting mixture was stirred under hydrogen (1 bar) for 18 h. The reaction mixture was filtered through a pad of Celite, and the filter cake was rinsed with ethanol. The ethanolic filtrate was concentrated in vacuo, and the crude residue was dissolved in saturated aqueous sodium hydrogen carbonate (5 mL). The solution was extracted with CH₂Cl₂ $(5 \times 20 \text{ mL})$, and the combined organic layers were dried with Na₂SO₄ and then concentrated in vacuo. The crude diamino ester derivative 27 (0.1 g, 99%, brown oil) was used in the next step without further purification. $[a]_D^{20} = +25.1$ (c = 0.31, CHCl₃). ¹H NMR $(400 \text{ MHz}, C_6D_6): \delta = 6.88 \text{ (t, } J = 7.2 \text{ Hz}, 1 \text{ H}), 6.45 \text{ (d, } J = 7.2 \text{ Hz},$ 1 H), 6.36 (d, J = 7.2 Hz, 1 H), 3.72 (br. s, 2 H), 3.47 (s, 3 H), 2.99 (m, 1 H), 2.13 and 2.65 (ABX system, J = 15.8, 7.2, 6.2 Hz, 2 H) ppm. ¹³C NMR (100 MHz, C₆D₆): δ = 156.0, 143.0, 133.6, 128.0, 127.2, 119.6, 116.5, 54.1, 53.2, 49.3, 38.5 ppm. IR (KBr): \tilde{v} = 3425, 3361, 1692 cm⁻¹. MS (EI): m/z (%) = 221 (100) [M]⁺⁺, 204 (24), 133 (32). HRMS (EI): calcd. for C₁₁H₁₅N₃O₂ 221.1164; found 221.1167.

(5*R*)-5-Amino-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinolin-1(2*H*)-one (39): To a solution of the crude diamino ester 27 (0.250 g, 1.13 mmol) in dry THF (3 mL) was added a solution of *t*BuOK [20% (w/w) in THF, 3.4 mL, 5.65 mmol]. After the reaction mixture was stirred at 20 °C for 3.5 h, water and AcOEt were added. After separation, the aqueous phase was extracted with AcOEt (5×20 mL). The combined organic layers were dried with Na₂SO₄ and then concentrated in vacuo. The crude amino derivative 39 (0.210 g, 98%, brown powder) was used in the next step without further purification; m.p. 153 °C. $[a]_{D}^{20} = -7.1$ (c = 0.16, CHCl₃). ¹H NMR (300 MHz, $[D_6]DMSO$): $\delta = 10.6$ (s, 1 H), 6.88 (dd, J =8.9, 6.8 Hz, 1 H), 6.79 (d, J = 8.9 Hz, 1 H), 6.77 (d, J = 6.8 Hz, 1 H), 3.86 (m, 1 H), 3.52 (br. s, 2 H), 2.91 (dd, J = 15.9, 3.3 Hz, 1 H), 2.50 (m, 1 H) ppm. ¹³C NMR (75 MHz, $[D_6]DMSO$): $\delta =$

135.6, 127.1, 126.3, 120.5, 119.0, 117.7, 106.3, 45.6 (2 C), 29.3 ppm. IR (KBr): $\tilde{v} = 3300$, 1684 cm⁻¹. MS (EI): m/z (%) = 189 (100) [M]⁺⁺, 171 (35), 147 (30). HRMS (EI): calcd. for C₁₀H₁₁N₃O 189.0902; found 189.0903.

(5R)-5-(Formylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-1(2H)-one (40): To a solution of amine 39 (0.170 g, 0.9 mmol) in acetonitrile (0.9 mL) was added a preformed mixture of Ac₂O/ HCO₂H (1:1, 0.28 mL) and Ac₂O (0.570 mL). The resulting solution was stirred under argon at 20 °C for 2 h and then concentrated in vacuo. To the residue was added MeOH (15 mL), and the solution was stirred at 20 °C for 1 h. After concentration in vacuo, the crude product was purified by silica gel column chromatography $(CH_2Cl_2/MeOH, 95:5; R_f = 0.12)$ to give formamide 40 (0.150 g, 77%) as an orange solid; m.p. 215 °C. $[a]_{D}^{20} = -153$ (c = 0.14, CHCl₃). ¹H NMR (300 MHz, [D₆]DMSO): *δ* = 10.74 (s, 1 H), 8.33 (d, J = 6.0 Hz, 1 H), 8.02 (s, 1 H), 6.96 (dd, J = 9.0, 8.8 Hz, 1 H), 6.87 (d, J = 8.8 Hz, 1 H), 6.79 (d, J = 9.0 Hz, 1 H), 4.46 (m, 1 H), 3.70 and 3.90 (ABX system, J = 12.0, 6.0, 3.0 Hz, 2 H), 2.86 and 3.07 (ABX system, J = 18.0, 6.0, 3.0 Hz, 2 H) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): *δ* = 160.9, 153.7, 126.9, 126.5, 120.7, 119.3, 116.1, 106.6, 42.0, 41.4, 29.1 ppm. IR (KBr): $\tilde{v} = 1576 - 1727 \text{ cm}^{-1}$. MS (EI): m/z (%) = 217 (16) [M]⁺⁻, 171 (100). HRMS (EI): calcd. for C₁₁H₁₁N₃O₂ 217.0851; found 217.0859.

(5R)-5-(Methylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-1(2H)-one [(R)-1]: To a stirred solution of formamide 40 (0.130 g, 0.6 mmol) in anhydrous THF (0.330 mL) was added dropwise a solution of BH₃·Me₂S complex (2 м solution in THF, 0.670 mL, 1.4 mmol). The stirring was continued at 20 °C under argon for 3 h. After concentration of the reaction mixture, a solution of HCl (2 N solution) in Et₂O (2.5 mL) and MeOH (2 mL) was added. The resulting solution was heated at reflux for 2 h. After cooling to 20 °C, the solution was concentrated in vacuo. The solid residue was triturated with a mixture of MeOH/Et₂O (1:1) and then filtered to give (R)-1·HCl as a brown solid (0.77 g, 63%). M.p. 297 °C (cf. $308 \,^{\circ}C^{[24a]}_{D} > 310 \,^{\circ}C^{[24b]}_{D}$. $[a]^{20}_{D} = -33.5 \,(c = 0.1, \text{ MeOH}) \,(\text{cf.})$ –35.1,^[24a] –30.3^[24b]). ¹H NMR (300 MHz, D₂O): δ = 7.05 (dd, J = 8.0 Hz, 1 H), 6.98 (d, J = 8.0 Hz, 1 H), 6.95 (d, J = 8.0 Hz, 1 H), 3.99 (m, 1 H), 3.96 and 4.17 (ABX system, J = 13.3, 2.9, <1 Hz, 2 H), 3.13 and 3.27 (ABX system, J = 17.3, 2.8, 2.5 Hz, 2 H), 2.70 (s, 3 H) ppm. ¹³C NMR (75 MHz, D_2O): δ = 155.0, 126.0 (2 C), 122.7, 120.5, 113.9, 108.7, 52.2, 39.3, 31.0, 25.9 ppm. IR (KBr): v = 1680 cm⁻¹. MS (EI): m/z (%) = 203 (100) [M]⁺⁺, 171 (28), 162 (30). HRMS (EI): calcd. for C₁₁H₁₃N₃O 203.1059; found 203.1062.

Supporting Information (see footnote on the first page of this article): General experimental methods, experimental procedures, analytical data for compounds 8a, 9a, 9b, 10a, 10b, 11–15, 22a–22c, and 23–26, significant ¹H and ¹³C NMR spectra of all new compounds, and crystallographic data of compound 11.

Acknowledgments

We thank Aurélien Planchat for the X-ray crystallographic structure determination.

- a) A. R. Katritzky, S. Rachwal, B. Rachwal, *Tetrahedron* 1996, 52, 15031–15068; b) V. Sridharan, P. A. Suryavanshi, J. C. Menéndez, *Chem. Rev.* 2011, 111, 7157–7259.
- [2] a) R. F. Heier, L. A. Dolak, J. N. Duncan, D. K. Hyslop, M. F. Lipton, I. J. Martin, M. A. Mauragis, M. F. Piercey, N. F. Nichols, P. J. K. D. Schreur, M. W. Smith, M. W. Moon, J. Med. Chem. 1997, 40, 639–646; b) R. B. McCall, K. L. Look-

ingland, P. J. Bédard, R. M. Huff, J. Pharmacol. Exp. Ther. 2005, 314, 1248–1256.

- [3] For the structure determination, see: Y. Ito, K. Ishida, S. Okada, M. Murakami, *Tetrahedron* 2004, 60, 9075–9080; for the Synthesis see: a) K. Gademann, Y. Bethuel, *Org. Lett.* 2004, 6, 4707–4710; b) K. Gademann, Y. Bethuel, *Angew. Chem.* 2004, 116, 3389; *Angew. Chem. Int. Ed.* 2004, 43, 3327–3329; c) Y. Bethuel, K. Gademann, J. Org. Chem. 2005, 70, 6258–6264.
- [4] For the asymmetric Synthesis see: a) M. Guinó, P. H. Phua, J.-C. Caille, K. K. Hii, J. Org. Chem. 2007, 72, 6290–6293; b) H. Liu, G. Dagousset, G. Masson, P. Retailleau, J. Zhu, J. Am. Chem. Soc. 2009, 131, 4598–4599.
- [5] For the Synthesis see: a) P. D. Leeson, R. W. Carling, K. W. Moore, A. M. Moseley, J. D. Smith, G. Stevenson, T. Chan, R. Baker, A. C. Foster, S. Grimwood, J. A. Kemp, G. R. Marshall, K. Hoogsteen, J. Med. Chem. 1992, 35, 1954–1968; b) M. Takamura, K. Funabashi, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2001, 123, 6801–6808.
- [6] a) I. Gallou-Dagommer, P. Gastaud, T. V. RajanBabu, Org. Lett. 2001, 3, 2053–2056; b) A. R. Jagdale, R. S. Reddy, A. Sudalai, Org. Lett. 2009, 11, 803–806.
- [7] For a review of the synthetic routes to sumanirole, see: a)
 P. G. M. Wuts, *Curr. Opin. Drug Discovery Dev.* 1999, 2, 557–564; for more recent syntheses, see: b)
 P. G. M. Wuts, R. L. Gu, J. M. Northuis, T. A. Kwan, D. M. Beck, M. J. White, *Pure Appl. Chem.* 2002, 74, 1359–1368; c)
 D. Gala, V. H. Dahanukar, J. Eckert, B. S. Lucas, D. P. Schumacher, I. A. Zavialov, *Org. Process Res. Dev.* 2004, 8, 754–768; d) see also ref.^[6b]
- [8] M. Pauvert, S. Collet, M.-J. Bertrand, A. Guingant, M. Evain, *Tetrahedron Lett.* 2005, 46, 2983–2987.
- [9] J. V. Cooney, J. Heterocycl. Chem. 1983, 20, 823–837 and references cited therein. An improved method is reported in the Experimental Section for optimized preparations of 8a.
- [10] F. D. Popp, L. E. Katz, C. W. Klinowski, J. M. Wefer, J. Org. Chem. 1968, 33, 4447–50.
- [11] X-ray crystal structure data: $C_{17}H_{14}N_2O_3$, $M_r = 294.3$, monoclinic, C2/c, a = 21.2550(5) Å, b = 6.0702(2) Å, c = 23.8302(6) Å, a = 106.7519(16), V = 2944.14(14) Å³, Z = 8, $\rho_{calcd.} = 1.3275$ g cm⁻³, $\mu = 0.093$ mm⁻¹, F(000) = 1266, colorless block, $0.15 \times 0.12 \times 0.10$ mm, $2\theta_{max} = 54.8^{\circ}$, T = 150 K, 16562 reflections, 3302 unique (99% completeness), $R_{int} = 0.1099$, 242 parameters, GOF = 1.23, wR2 = 0.1098, R = 0.0498 for 1934 reflections with $I > 2\sigma(I)$. CCDC-871760 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [12] The stereochemical assignments for compounds 9a and 10a could be safely made after the structure of 11 was revealed by single-crystal X-ray diffraction. The stereochemical assignments for 9b and 10b were made by analogy (see also ref.^[13]).
- [13] The mCPBA epoxidation of 8a had already been studied, but the stereochemistry of 9a was erroneously assigned (syn instead of anti arrangement) on the basis of NMR considerations: M. Kratzel, R. Hiessböck, Monatsh. Chem. 1993, 124, 1207–1209.
- [14] R. F. Collins, T. Henshall, J. Am. Chem. Soc. 1958, 80, 159– 161.
- [15] R. L. Cobb, W. E. McEwen, J. Am. Chem. Soc. 1955, 77, 5042– 5048. An improved preparation of amide 12 and ester 13 is described in the Experimental Section.
- [16] The structure of 15 was firmly established by single-crystal Xray diffraction: M. Evain, M. Pauvert, S. Collet, A. Guingant, *Acta Crystallogr, Sect. E* 2004, 60, 754–755.
- [17] D. A. Evans, M. M. Faul, M. T. Bilodeau, J. Am. Chem. Soc. 1994, 116, 2742–2753.
- [18] P. Dauban, R. H. Dodd, J. Org. Chem. 1999, 64, 5304-5307.
- [19] M. Evain, L. Jean-Gérard, S. Collet, A. Guingant, Acta Crystallogr., Sect. E 2007, 63, 04023.
- [20] A preliminary communication based on this strategy has been disclosed. For this report, see: L. Jean-Gérard, F. Macé, H.

FULL PAPER

Dentel, A. N. Ngo, S. Collet, A. Guingant, M. Evain, Synlett 2010, 1473–1476.

- [21] D. E. Minter, P. L. Stotter, J. Org. Chem. 1981, 46, 3965-3970.
- [22] W. H. Pirkle, K. A. Simmons, J. Org. Chem. 1983, 48, 2520– 2527.
- [23] M. W. Moon, J. K. Morris, R. F. Heier, C. G. Chidester, W. E. Hoffmann, M. F. Piercey, J. S. Althaus, P. F. Von Voiglander, D. L. Evans, L. M. Figur, R. A. Lahti, *J. Med. Chem.* **1992**, *35*, 1076–1092.
- [24] a) R. F. Heier, M. W. Moon, W. T. Stolle, J. A. Easter, R. S. Hsi, *J. Labelled Compd. Radiopharm.* 1996, *38*, 1087–1098; b)
 R. F. Heier, L. A. Dolak, J. N. Duncan, D. K. Hyslop, M. F. Lipton, I. J. Martin, M. A. Mauragis, M. F. Piercey, N. F. Nichols, P. J. K. D. Schreur, M. W. Smith, M. Moon, *J. Med. Chem.* 1997, *40*, 639–646.

Received: March 19, 2012 Published Online: June 15, 2012