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Abstract: Asymmetric syntheses of neurokinin substance P recep-
tor antagonists (+)-CP-99,994 and (+)-L-733,060 have been accom-
plished starting from enantiomerically pure (3S,4S)-4-(tert-
butylcarbamoyl)-4-phenyl-1-buten-3-ol.

Key words: 1,2-amino alcohols, 1,2-diamines, hydroformylations,
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2,3-Disubstituted piperidines, structural units found in
several drug candidates and natural products, have attract-
ed considerable attention as synthetic targets because of
their unique biological activities. For example, (+)-CP-
99,994 (1)1 and (+)-L-733,060 (2)1g,2 are potent neuroki-
nin substance P receptor antagonists.3 Febrifugine (3)4

and isofebrifugine (4)4 are well-known antimalarial
agents (Figure 1).

Figure 1 Biologically active 2,3-disubstituted piperidines

Although all these compounds belong to a class of small
molecules with simple structural units, efficient synthetic
methods for their preparation have not yet been estab-
lished. In designing the syntheses of such compounds,
several points should be taken into consideration. Firstly,
it would be absolutely important to synthesize them in
enantiomerically pure forms, neither in racemic nor in
non-racemic forms, from a biological standpoint. Second-
ly, the synthetic processes should be flexible and scalable
for the syntheses of relevant compounds such as diaste-
reomers, enantiomers and analogues requisite for struc-

ture–activity relationship (SAR) study. Thirdly, the
efficient processes associated with mild reaction condi-
tions are highly desirable that lead to environmentally
benign processes.

We have recently established a practical access to 4-(tert-
butylcarbamoyl)-1-alken-3-ols with exceedingly high
enantiomeric purity by virtue of the lipase-catalyzed ki-
netic resolution.5 This protocol has paved a way for man-
made chirons having three consecutive functionalities
(i.e. amino, hydroxy and vinyl groups) of high synthetic
value, otherwise difficult to obtain from natural amino ac-
ids. Thus, we envisaged to synthesize 1 and 2 by taking
advantage of (3S,4S)-4-(tert-butylcarbamoyl)-4-phenyl-
1-buten-3-ol (5)5 (>99% ee) as a common starting materi-
al.

The success in the synthesis of 1 seemed to depend strong-
ly upon the regio- and stereoselective introduction of a ni-
trogen functionality in the C-3 position of 5, for which we
planned to utilize palladium-catalyzed C–O to C–N bond
transformation developed by us.6–8 Thus, syn 3-benzoyl-
oxy-4-phenyl-4-(3-tosylureido)-1-buten (7) was derived
from 5 through a sequence of reactions involving benzoyl-
ation, deprotection of the Boc group followed by the
amino group protection with p-tosyl isocyanate. The
palladium-catalyzed intramolecular attack of the nitrogen
anion on a p-allylpalladium intermediate took place very
smoothly to afford a mixture of trans imidazolidin-2-one
8a (89%) and cis isomer 8b (7%) as shown in Scheme 1.

Scheme 1 Palladium-catalyzed C–O to C–N bond transformation.
Reagents and conditions: (a) BzCl, pyridine, r.t., 10 h; (b) TFA,
CH2Cl2, r.t., 1 h; (c) p-TsNCO, THF, r.t., 2.5 h; (d) Pd2(dba)3 (2.5
mol%), dppp (10 mol%), DBU, DMSO, 50 °C, 4 h.
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Optimum conditions with regard to the solvent and the
base were examined, in which a combination of dimethyl
sulfoxide and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)
proved to give the satisfactory yield with high diastereo-
selectivity.9 It is worth noting that the forerunning fraction
8b could be easily removed by medium-pressure column
chromatography.

Scheme 2 Synthesis of (+)-CP-99,994. Reagents and conditions:
(a) Ethylenediamine (50 mol equiv), 160 °C (autoclave), 6 h; (b)
Boc2O, CH2Cl2, r.t., 12 h; (c) Rh(acac)(CO)2 (3 mol%), biphephos (6
mol%), THF, CO–H2 (5 atm), 65 °C, 8 h; (d) cat. CSA, THF, r.t., 9 h;
(e) H2 (1 atm), 10% Pd–C, EtOH, r.t., 12 h; (f) Boc2O, cat. DMAP,
THF, r.t., 6 h; (g) Na, naphthalene, THF, –78 °C, 1 h; (h) 2-methoxy-
benzyl chloride, NaH, TBAI, THF–DMF (1:3), 0 °C, 18 h; (i) TFA,
r.t., 2 h; NaHCO3, 95%.

With enantiomerically pure 8a in hand, we then tried to
cleave the imidazolidinone ring. The attempted known
procedures such as acid10a or base-mediated10b,c hydroly-
sis, however, had no effect on 8a. Eventually, the success-
ful ring cleavage of 8a was accomplished with a large
excess of ethylenediamine in an autoclave at 160 °C,11

giving a mono-N-Ts-protected 1,2-diamine.12 To the best
of our knowledge, the ring-cleavage reaction of imidazo-
lidinones through amine-exchange protocol has never
been reported, but would be of high synthetic value. The
free amine thus obtained was protected by a Boc group to
afford 9.

Next we stepped into the piperidine ring formation, for
which we selected a Rh-catalyzed hydroformylation.13

Compound 9 underwent smooth hydroformylation with a
catalytic system of Rh(acac)(CO)2 (3 mol%) and biphe-
phos (6 mol%)14 under five atmospheres of CO–H2 (1:1),
giving a mixture of the N-Boc-protected aminal and en-
amide 10 as major products.15 The crude reaction mixture
was submitted to 10-camphorsulfonic acid (CSA)-cata-
lyzed dehydration to afford 1016 in 84% yield. Enamide 10
was hydrogenated in quantitative yield to provide a
saturated 3-tosylaminopiperidine, which was subjected to

the reductive cleavage of N-tosyl group with sodium
naphthalenide. This attempt, however, was unsuccessful
and a complex mixture was obtained. Thus, the tosyl-
amino group was further protected with (Boc)2O–4-(N,N-
dimethylamino)pyridine (DMAP) to give 11a, whose
p-tosyl group was smoothly removed by treatment with
sodium naphthalenide in tetrahydrofuran at –78 °C.
Carbamate 11b thus obtained was deprotonated with
sodium hydride in tetrahydrofuran–N,N-dimethylform-
amide (1:3) at room temperature and carefully treated
with 2-methoxybenzyl chloride in the presence of tetra-
butylammonium iodide (TBAI) at 0 °C for 18 hours to
produce 12 (87%).17,18 Finally, treatment of 12 with tri-
fluoroacetic acid at room temperature for two hours
provided 119 (Scheme 2) in 95% yield {mp (dihydro-
chloride): 253–254.5 °C; [a]D

24 +77.5 (dihydrochloride,
c = 1.05, MeOH)} {Lit.1a mp (dihydrochloride): 255 °C,
[a]D

25 +77 (dihydrochloride, c = 1.0, MeOH); Lit.1e mp
(dihydrochloride): 254.5 °C, [a]D

23 +75.5 (dihydro-
chloride, c = 1.1, MeOH); Lit.1g [a]D

16 +75.1 (dihydro-
chloride, c = 0.6, MeOH); Lit.1j mp: 236 °C, [a]D

20 –73.0
(hydrochloride of ent-1, c = 1.0, MeOH)}.

On the other hand, the synthesis of 2 was successfully
achieved as shown in Scheme 3, in which the piperidine
framework was also constructed through the aforemen-
tioned hydroformylation. The hydroformylation of ben-
zoate 620 under the same conditions as that of 9 proceeded
smoothly to provide enamide 1321,22 (95%). In this case,
13 was obtained in a straightforward manner without the
treatment with CSA. Hydrogenation of 13 followed by al-
kaline hydrolysis gave piperidine 14.23 Finally, 3,5-bistri-
fluoromethylbenzylation provided 15,24 whose Boc group
was removed to give 225 {yield: 85% for two steps; mp
(hydrochloride): 215–217 °C, [a]D

23 +87.1 (hydrochlo-
ride, c = 1.0, MeOH), [a]D

24 +73.7 (free base, c = 1.3,
CHCl3)}{Lit.1g mp 213–215 °C, [a]D

28 +84.5 (hydrochlo-
ride, c = 0.8, MeOH); Lit.2a 215–216 °C, [a]D

23 +87.3
(hydrochloride, c = 1, MeOH); Lit.2d [a]D

25 +34.29 (free
base, c = 1.32, CHCl3); Lit.2e [a]D

25 +32.65 (free base, c =
1.0, CHCl3); Lit.1i mp 200–202 °C, [a]D

20 –83.9 (hydro-
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Scheme 3 Synthesis of (+)-L-733,060. Reagents and conditions: (a)
Rh(acac)(CO)2 (3 mol%), biphephos (6 mol%), CO–H2 (5 atm), THF,
65 °C, 5 h; (b) 10% Pd–C, H2(1 atm), EtOH, r.t., 20 h; (c) 1 M NaOH–
MeOH–1,4-dioxane, (2:3:6), r.t., 1 h; (d) 3,5-(CF3)2C6H3CH2Br,
NaH, THF–DMF (1:3), 0 °C, 6 h; (e) TFA, r.t., 1.5 h, NaHCO3.
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chloride of ent-2, c = 0.99, MeOH); Lit.1j mp 210 °C,
[a]D

20 –86.0 (hydrochloride of ent-2, c = 1.0, MeOH)}.

In conclusion, we have successfully established an effi-
cient synthetic method for (+)-CP-99,994 and (+)-L-
733,060 from enantiomerically pure (3S,4S)-4-(tert-bu-
tylcarbamoyl)-4-phenyl-1-buten-3-ol as a common start-
ing material without loss of optical purity.
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(m, 1 H), 3.41 (d, J = 13.8 Hz, 1 H), 3.44 (s, 3 H), 3.67 (d, 
J = 13.8 Hz, 1 H), 3.88 (d, J = 2.1 Hz, 1 H), 6.68 (br d, J = 
8.2 Hz, 1 H), 6.80 (br t, J = 7.3 Hz, 1 H), 6.97 (dd, J = 1.5, 

7.3 Hz, 1 H), 7.15 (dt, J = 1.5, 8.2 Hz, 1 H), 7.20–7.31 (m, 
5 H). 13C NMR (free base, CDCl3): d = 20.4, 28.2, 46.7, 47.8, 
54.7, 54.8, 64.0, 109.8, 120.0, 126.3, 126.5, 127.8, 128.2, 
129.6, 142.4, 157.6.

(20) Protection of C3-hydroxyl group as a benzoate was of choice 
for the subsequent hydroformylation.

(21) Compound 13: colorless viscous oil; [a]D
24 –152.3 (c = 1.02, 

CHCl3). 
1H NMR (CDCl3): d = 1.25 (br s, 6 H), 1.40–1.55 

(br m, 3 H), 2.05–2.25 (m, 1 H), 2.40 (m, 1 H), 4.83 (br m, 
0.33 H), 4.93 (br m, 0.67 H), 5.40 (br m, 0.33 H), 5.46–5.63 
(m, 1.67 H), 7.00–7.35 (m, 6 H), 7.40 (m, 2 H), 7.55 (m, 1 
H), 7.90 (m, 2 H). 13C NMR (CDCl3): d = 23.7, 24.0, 27.9, 
28.2, 56.0, 57.3, 69.2, 81.3, 100.4, 126.1, 126.4, 127.5, 
127.6, 128.0, 128.35, 128.38, 129.69, 129.71, 129.8, 133.1, 
138.6, 152.3, 165.6. Anal. Calcd for C23H25NO4: C, 72.80; 
H, 6.64; N, 3.69. Found: C, 72.76; H, 6.84; N, 3.66.

(22) Five-membered aminals (4%) were also isolated.
(23) Compound 14: colorless viscous oil; [a]D

22 +56.7 (c = 1.3, 
CHCl3) {Lit.1g [a]D

15 +53.77 (c = 1.0, CHCl3); Lit.2d [a]D
25 

+38.30 (c = 1.92, CHCl3)}. 1H NMR (CDCl3): d = 1.37 (s, 9 
H), 1.54–1.62 (m, 1 H), 1.69 (m, 1 H), 1.76–1.87 (m, 3 H), 
3.04 (m, 1 H), 4.01 (dd, J = 5.8, 12.8 Hz, 1 H), 4.09 (m, 1 H), 
5.32 (d, J = 5.8 Hz, 1 H), 7.27 (m, 1 H), 7.37–7.32 (m, 2 H), 
7.45 (m, 2 H). 13C NMR (CDCl3): d = 23.1, 27.7, 28.3, 39.5, 
59.3, 70.1, 79.9, 127.2, 128.4, 138.5, 155.4. Anal. Calcd for 
C16H23NO3: C, 69.29; H, 8.36; N, 5.05. Found: C, 69.21; H, 
8.59; N, 4.77. The enantiomeric purity of 14 was determined 
to be >99% ee by HPLC [CHIRALCEL OJ-H; hexane–i-
PrOH = 9:1; l = 220 nm; flow rate: 1.0 mL/min; tR(14) = 
4.80 min; tR(ent-14) = 5.75 min].

(24) Compound 15: colorless oil; [a]D
23 +43.3 (c = 1.60, CHCl3) 

{Lit.1g [a]D
28 +36.90 (c = 1.0, CHCl3)}. 1H NMR (CDCl3): 

d = 1.46 (s, 9 H), 1.58–1.76 (m, 2 H), 1.94–2.05 (m, 2 H), 
2.77 (ddd, J = 3.3, 13.4, 13.4 Hz, 1 H), 3.88 (m, 1 H), 3.95 
(dd, J = 3.3, 13.4 Hz, 1 H), 4.71 (d, J = 12.5 Hz, 1 H), 4.75 
(d, J = 12.5 Hz, 1 H), 5.70 (br s, 1 H), 7.25–7.36 (m, 3 H), 
7.54 (br s, 1 H), 7.56 (br s, 1 H), 7.71 (br s, 2 H), 7.78 (br s, 
1 H). 13C NMR (CDCl3): d = 24.2, 25.8, 28.4, 39.2, 55.4, 
69.1, 78.7, 80.1, 121.4 (m), 123.3 (q, J = 272 Hz), 127.0, 
127.2, 128.28, 128.32, 131.6 (q, J = 32.9 Hz), 138.0, 141.0, 
155.3. The enantiomeric purity of 15 was determined to be 
>99% ee by HPLC [CHIRALPAK IA; hexane–i-PrOH = 
30:1; l = 220 nm; flow rate: 0.3 mL/min; tR(15)= 14.1 min; 
tR(ent-15) = 16.6 min)].

(25) L-733,060 (2): 1H NMR (free base, CDCl3): d = 1.53 (m, 1 
H), 1.66–1.75 (m, 1 H), 1.88 (m, 1 H), 2.22 (br d, J = 14.0 
Hz, 1 H), 2.85 (ddd, J = 3.1, 12.5, 12.5 Hz, 1 H), 3.29 (m, 1 
H), 3.68 (br m, 1 H), 3.85 (d, J = 1.2 Hz, 1 H), 4.13 (d, J = 
12.5 Hz, 1 H), 4.52 (d, J = 12.5 Hz, 1 H), 7.25–7.29 (m, 1 H), 
7.30–7.35 (m, 2 H), 7.35–7.39 (m, 2 H), 7.44 (br s, 2 H), 7.69 
(br s, 1 H). 13C NMR (free base, CDCl3): d = 20.5, 28.4, 47.1, 
64.2, 70.0, 77.3, 121.1 (hept, J = 4.1 Hz), 123.2 (q, J = 271 
Hz), 126.7, 127.0, 127.4 (m), 128.1, 131.2 (q, J = 32.9 Hz), 
141.2, 141.9.
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