RSC Advances

View Article Online

View Journal | View Issue

COMMUNICATION

Cite this: RSC Adv., 2015, 5, 35421

Received 13th March 2015 Accepted 13th April 2015

DOI: 10.1039/c5ra04472c

www.rsc.org/advances

Organocatalytic direct difluoromethylation of aldehydes and ketones with $\mathsf{TMSCF}_2\mathsf{H}^+_1$

Guang-Fen Du,^{ab} Ying Wang,^b Cheng-Zhi Gu,^b Bin Dai^{*b} and Lin He^{*b}

An organic Lewis base promoted direct difluoromethylation reaction of carbonyl compounds with Me₃SiCF₂H has been studied. The Schwesinger's superbase can efficiently activate the Si-CF₂H bond and initiate the difluoromethylation of aldehydes and ketones under very mild conditions, producing difluoromethyl adducts in 42–99% yields.

Organofluorine compounds have found widespread applications in pharmaceuticals, agrochemicals and medicinal chemistry.1 In particular, the introduction of fluorinated moieties into organic molecules has become a powerful strategy in new drug discovery. As a result, tremendous efforts have been exerted to develop efficient methodologies for the synthesis of fluoroorganics. Among various fluorinated moieties. difluoromethyl group (CF₂H) has attracted considerable attention in recent years.² CF₂H is isosteric to hydroxy group (OH) and compared to OH and NH groups, this fluorinated moiety can serve as a lipophilic hydrogen bond donor through hydrogen bonding.³ These unique properties make the CF_2H group to be particularly interesting with respect to the design of biologically active molecules. However, compared to the extensively studied trifluoromethylation reactions,⁴ efficient methods for the introduction of CF₂H group are scarce. Similar with the direct nucleophilic trifluoromethylation reactions, the direct difluoromethylation reaction is the most straightforward method for the introduction of CF₂H group into organic molecules. However, difluoromethylated organometallic reagents are inefficient for difluoromethylation of carbonyl compounds.5 Difluoromethyl phenylsulfone6 and several difluoromethylsilanes7 can undergo indirect difluoromethylation with carbonyl compounds, but additional reactions are needed to

remove the auxiliary groups of the difluoromethylated adducts. Silylated reagent TMSCF₂H can be easily prepared from Ruppert–Prakash reagent (TMSCF₃).⁸ In 1995, Fuchikami and Hagiwara documented⁹ that KF can initiate the direct difluoromethylation reaction of TMSCF₂H and carbonyl compounds. However, unlike the analogous Si–CF₃ bond, harsh reaction conditions are required for the cleavage of the relatively inert Si–CF₂H bond, which restricts the applications of this difluoromethylating reagent for long time. Until recently, Hu and coworkers¹⁰ found that CsF or stoichiomeric *t*-BuOK can activate the Si–CF₂H bond efficiently and initiate the difluoromethylation of carbonyl compounds and imines. However, to the best of our knowledge, no other catalysts have been developed for the activation of TMSCF₂H and efficient protocol for the direct difluoromethylation is still highly desirable.

In recent years, several organic Lewis bases such as Bu_4N^+ alkoxides,¹¹ tris(2,4,6-trimethoxyphenyl)phosphine,¹² sodium phenoxide-phosphine oxides13 and N-heterocyclic carbenes14 have been utilized successfully for the activation of different silylated reagents. As an important class of superbases, proazaphosphatranes exhibit high reactivity toward the activation of silvlated nucleophiles and a variety of transformations have been developed by Verkade and co-workers¹⁵ in the past decade. As another important type of superbases, phosphazenes¹⁶ have been applied successfully in deprotonative reactions.17 However, phosphazenes catalysed transformations of organosilanes are farless examined. Until recently, Kondo and coworkers¹⁸ disclosed that phosphazene bases can be utilized to activate several silvlated nucleophiles efficiently. We envisioned that phosphazenes and other organic Lewis bases can be utilized to activate TMSCF₂H to initiate the direct difluoromethylation reaction of carbonyl compounds. Herein, we would like to disclose these interesting results.

Our study commenced with the reaction of TMSCF_2H and *p*chlorobenzaldehyde. To our delight, we found that the reaction proceed smoothly in the presence of 10 mol% *t*-Bu-P₄ (4a), producing difluoromethyl carbinol 3a in 52% yield after 12 h (Table 1, entry 1). Phosphazene bases 4b and 4c can also

[&]quot;School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China

^bSchool of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. China. E-mail: db_tea@shzu.edu.cn; helin@ shzu.edu.cn; Fax: +86-993-2057270

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ra04472c

Table 1 Screening of reaction conditions^a

TMSCF 1	2H + CI 2a CHO 1) c si 2) H	at, (10 mol%) olvent, rt 30 ⁺ Cl	OH CF ₂ H 3a				
(Me₂N	t-Bu I I) ₃ P=N-P-N=P(NMe ₂) ₃ N=P(NMe ₂) ₃ 4a : t-Bu-P4 base	N [—] tBu II Me₂N [—] P [—] N [—] P(NMe₂ 4b : t-Bu-P2 bas	NMe ₂) ₃				
$\begin{array}{c c} & & & & & & \\ & & & & \\ Me_2N-P-NMe_2 \\ & & & \\ NMe_2 \\ & & & \\ Sb: R = 2, 6-(i-Pr)_2C_6H_3 \\ & & & \\ Sb: R = 2, 4, 6-Me_3C_6H_2 \\ & & \\ Sc: R = t-Bu \\ & & \\ Sd: R = cyclohexyl \\ \end{array}$							
Entry	Conditions	Time (h)	Yield ^{<i>v</i>} (%)				
1	4a , THF	12	52				
2	4b , THF	12	34				
3	4c , THF	12	18				
4	5a, ^t BuOK, THF	72	11				
5	5 b , ^{<i>t</i>} BuOK, THF	72	12				
6	5c , ^{<i>t</i>} BuOK, THF	72	<10				
7	5 d , ^{<i>t</i>} BuOK, THF	72	<10				
8	6 , THF	12	0				
9	4a, DMF	0.5	91				
10	4 b , DMF	2	73				
11	4c , DMF	2	48				
12	4a , PhCH ₃	12	23				
13	4a, CH_2Cl_2	12	<10				
14	4a, CH₃CN	12	<10				
15 ^c	4a , DMF	12	63				

promote the addition reaction, but in relatively low efficiency (Table 1, entries 2 and 3). To our surprise, N-heterocyclic carbenes 5a-5d, which were proved to be highly efficient catalysts for trifluoromethylation of aldehydes,19 only showed very low efficiency for difluoromethylation reaction of aldehydes (Table 1, entries 4-7). Whereas DBU can't catalyse the addition reaction (Table 1, entry 8). The evaluation of other reaction media indicated the high polar solvent of DMF was the best choice with respect to the reaction yield (Table 1, entries 9-14). Reduction of catalyst loading to 5 mol% led to dramatic decrease of reaction rate (Table 1, entry 15).

^a 1 (1.5 equiv.), 2a (1.0 equiv.). ^b Isolated yield. ^c Using 5 mol% 4a.

With the optimized reaction conditions in hand, the substrate scope and the generality of the reaction were subsequently investigated, and the results are summarized in Table 2. Aromatic aldehydes bearing electron-withdrawing, -neutral, and -donating groups can participate in the direct difluoromethylation reaction in excellent yields (Table 2, entries 1-6). Additionally, the substituents on the ortho-, meta-, and parapositions of the aromatic ring showed no obvious effects on the reaction yields (Table 2, entries 7-11). Interestingly,

Table 2	Evaluation	of	aldehv	/des ^a

	1) 4a (10 mol%) OH				
	TMSCF ₂ H + RCH 1 2	02) H ₃ 0 ⁺	$\begin{array}{c} \hline 2 \\ 2 \\ H_3O^+ \\ \mathbf{R} \\ \mathbf{S} \\ \mathbf{C}F_2H \\ \mathbf{S} \\ $		
Entry	R	Time (h)	Product	$\operatorname{Yield}^{b}(\%)$	
1	CI	0.5	3a	91	
2	F	0.5	3b	99	
3	Br - S	0.5	3c	99	
4	<u> </u>	1	3d	99	
5	H ₃ C	1	3e	99	
6	H ₃ CO	1	3f	99	
7	CI S	0.5	3g	92	
8	CI	0.5	3h	92	
9	Br	0.5	3i	99	
10	OCH3	0.5	3j	99	
11	H ₃ CO	0.5	3k	99	
12		3	31	95	
13		3	3m	88	
14		1	3n	99	
15 ^c	C St	0.5	30	87	
16 ^c	s s	3	3р	68	

Table 2 (Contd.)

^{*a*} Reaction conditions: 10 mol% of **4a**, 1.5 equiv. of **1**, 0.5 mol L⁻¹ of **2**, room temperature for 0.5–3 h. ^{*b*} Isolated yield. ^{*c*} Using 2.0 equiv. TBAF instead of HCl for desilification. ^{*d*} Using 20 mol% of **4a**.

Scheme 1 Difluoromethylation of ketones.

naphthaldehyde and heliotropin were proved to be excellent candidates for the reaction, producing the corresponding difluoromethyl carbinols in excellent yields (Table 2, entries 12– 14). A variety of heterocyclic aldehydes, such as furfural, 2thienal, pyrrole-2-carboxaldehyde, indole-4-carboxaldehyde, isoquinoline-5-carboxaldehyde and 5-coumarancarboxaldehyde can participate in the reaction smoothly, producing the corresponding products in good to high yields (Table 2, entries 15–20). Increasing the catalyst loading to 20 mol%,

Scheme 2 Proposed reaction mechanism

cinnamaldehyde can also undergo the reaction smoothly to produce **3u** in 81% yield (Table 2, entry 21). However, for aliphatic aldehyde **2v**, the strong basicity of *t*-Bu-P4 can cause undesired side reactions, which led to moderate yield of the final fluorinated product (Table 2, entry 22).

We further applied this protocol to the more challenging ketones. Gratifyingly, under the standard reaction conditions, non-enolizable ketones such as biaryl ketone 7a and fluorenone 7b react with TMSCF₂H smoothly to afford the corresponding products in 43% and 46% yields, respectively (Scheme 1).

Based on the pioneering work of Kondo¹⁸ and Verkade,¹⁵ a plausible mechanism is proposed and illustrated in Scheme 2. *t*-Bu-P4 attacks the silicon atom of TMSCF₂H to form a hexavalent species **I**, which might trigger the addition to carbonyl compounds and produce oxy anion **II**. The following migration of TMS from *t*-Bu-P4 to **II** led to the formation of **III** with release of the catalyst. And acidic work up produces the difluoromethyl carbinol.

Conclusions

In conclusion, we have demonstrated an organocatalytic difluoromethylation reaction of aldehydes and ketones. The mild conditions, simple procedure and high yields provide an efficient and novel protocol for the introduction of the significantly important difluoromethyl group into organic molecules, which paves the new way for direct difluoromethylation reactions, although the protocol is not suitable for aliphatic aldehydes and enolizable ketones. Further study of the reaction scope and the applications of this methodology in bioactive compounds synthesis are on-going in our group.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 21262027) and the Natural Science Foundation of Shihezi university (no. 2011ZRKETD-04, 2012ZRKXJQ06).

Notes and references

- 1 (a) J. Wang, M. Sánchez-Roselló, J. Luis Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok and H. Liu, Chem. Rev., 2014, 114, 2432; (b) P. Kirsch, Modern fluoroorganic chemistry: synthesis, reactivity, applications, Wiley-VCH, Weinheim, 2nd edn, 2013; (c) I. Ojima, J. Org. Chem., 2013, 78, 6358; (d) K. Uneyama, J. Fluorine Chem., 2008, 129, 550; (e) K. Müller, C. Faeh and F. Diederich, Science, 2007, 317, 1881; (f) J. P. Bégué and D. Bonnet-Delpon, Bioorganic and medicinal chemistry of fluorine, Wiley-VCH, Weinheim, 2008; (g) Fluorine in Medicinal Chemistry and Chemical Biology, ed. I. Ojima, Wiley-Blackwell, Chichester, 2009; (h) Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications, ed. V. Gouverneur and K. Muller, Imperial College Press, London, 2012.
- 2 For reviews, see: (a) C.-F. Ni, L.-G. Zhu and J.-B. Hu, *Acta Chim. Sin.*, 2015, 73, 90; (b) B. Gao, C. Ni and J. Hu, *Chimia*, 2014, 68, 414; (c) P. Xu, S. Guo, L. Wang and P.-P. Tang, *Synlett*, 2015, 26, 36; (d) T. Besset, T. Poisson and X. Pannecoucke, *Chem.–Eur. J.*, 2014, 20, 16830; (e) Y.-L. Liu, J.-S. Yu and J. Zhou, *Asian J. Org. Chem.*, 2013, 2, 194; (f) J.-B. Hu, W. Zhang and F. Wang, *Chem. Commun.*, 2009, 7465; (g) C. Ni, M. Hu and J.-B. Hu, *Chem. Rev.*, 2015, 115, 765.
- 3 (a) G. K. S. Prakash, M. Mandal, S. Schweizer, N. A. Petasis and G. A. Olah, *J. Org. Chem.*, 2002, 67, 3718; (b) J. A. Erickson and J. I. McLoughlin, *J. Org. Chem.*, 1995, 60, 1626; (c) Y. Li and J. Hu, *Angew. Chem., Int. Ed.*, 2005, 44, 5882–5886; (d) G. K. S. Prakash, C. Weber, S. Chacko and G. A. Olah, *Org. Lett.*, 2007, 9, 1863.
- 4 For selected reviews, see: (a) M. Médebielle and W. R. Dolbier Jr, J. Fluorine Chem., 2008, 129, 930; (b) J. A. Ma and D. Cahard, Chem. Rev., 2008, 108, PR1; (c) J. Nie, H. C. Guo, D. Cahard and J. A. Ma, Chem. Rev., 2011, 111, 455; (d) G. Valero, X. Companyó and R. Rios, Chem.-Eur. J., 2011, 17, 2018; (e) O. A. Tomashenko and V. V. Grushin, Chem. Rev., 2011, 111, 4475; (f) X.-F. Wu, H. Neumann and M. Beller, Chem.-Asian J., 2012, 7, 1744; (g) T. Besset, C. Schneider and D. Cahard, Angew. Chem., Int. Ed., 2012, 51, 5048; (h) T. Liang, C. N. Neumann and T. Ritter, Angew. Chem., Int. Ed., 2013, 52, 8214; (i) J. Xu, X. Liu and Y. Fu, Tetrahedron Lett., 2014, 55, 585; (j) E. Merino and C. Nevado, Chem. Soc. Rev., 2014, 43, 6598; (k) L. Chu and F.-L. Qing, Acc. Chem. Res., 2014, 47, 1513.
- 5 (a) G. A. Hartgraves and D. J. Burton, J. Fluorine Chem., 1988,
 39, 425; (b) D. J. Burton, G. A. Hartgraves and J. Hsu, Tetrahedron Lett., 1990, 31, 3699; (c) D. J. Burton and G. A. Hartgraves, J. Fluorine Chem., 2007, 128, 1198.
- 6 G. K. S. Prakash and J. Hu, Acc. Chem. Res., 2007, 40, 921.
- 7 For an excellent review, see: (a) K. Uneyama, J. Fluorine Chem., 2008, 129, 550, for selected examples, see: (b) J. Liu, C. Ni, F. Wang and J. Hu, Tetrahedron Lett., 2008, 49, 1605; (c) L. Zhu, Y. Li, Y. Zhao and J. Hu, Tetrahedron Lett., 2010, 51, 6150; (d) T. Bootwicha, D. Panichakul, C. Kuhakarn, S. Prabpai, P. Kongsaeree, P. Tuchinda, V. Reutrakul and M. Pohmakotr, J. Org. Chem., 2009, 74, 3798; (e) Y. Li and

J. Hu, J. Fluorine Chem., 2008, **129**, 382; (f) M. Pohmakotr, D. Panichakul, P. Tuchinda and V. Reutrakul, *Tetrahedron*, 2007, **63**, 9429; (g) S. Mizuta, N. Shibata, S. Ogawa, H. Fujimoto, S. Nakamura and T. Toru, *Chem. Commun.*, 2006, 2575; (h) G. K. S. Prakash, J. Hu, Y. Wang and G. A. Olah, J. Fluorine Chem., 2005, **126**, 527; (i) C. Ni and J. Hu, *Tetrahedron Lett.*, 2005, **46**, 8273; (j) Y.-Y. Qin, X.-L. Qiu, Y.-Y. Yang, W.-D. Meng and F.-L. Qing, J. Org. Chem., 2005, **70**, 9040.

- 8 A. A. Tyutyunov, V. E. Boyko and S. M. Igoumnov, *Fluorine Notes*, 2011, 74, 1.
- 9 T. Hagiwara and T. Fuchikami, Synlett, 1995, 1995, 717.
- 10 Y. Zhao, W. Huang, J. Zheng and J. Hu, Org. Lett., 2011, 13, 5342.
- 11 (a) M. Das and D. F. O'Shea, J. Org. Chem., 2014, 79, 5595; (b)
 T. Kitazawa, T. Minova and T. Mukaiyama, Chem. Lett., 2006, 35, 1002.
- 12 (*a*) S. Matsukawa and E. Kitazaki, *Tetrahedron Lett.*, 2008, **49**, 2982; (*b*) S. Matsukawa and T. Sekin, *Synth. Commun.*, 2009, **39**, 1718.
- 13 M. Hatano, E. Takagi and K. Ishihara, Org. Lett., 2007, 9, 4527.
- 14 For reviews on NHCs mediated transformations of silylated reagents, see: (a) M. J. Fuchter, *Chem.-Eur. J.*, 2010, **16**, 12286; (b) L. He, H. Guo, Y. Wang, G.-F. Du and B. Dai, *Tetrahedron Lett.*, 2015, **56**, 972.
- 15 For reviews, see: (a) J. G. Verkade and P. B. Kisanga, *Tetrahedron*, 2003, 59, 7819–7858; (b) J. G. Verkade and P. B. Kisanga, *Aldrichimica Acta*, 2004, 37, 3–14; (c) S. Urgaonkar and J. G. Verkade, *Spec. Chem.*, 2006, 26, 36– 39, for selected examples, see: (d) K. Wadhwa and J. G. Verkade, *J. Org. Chem.*, 2009, 74, 5683; (e) K. Wadhwa, V. R. Chintareddy and J. G. Verkade, *J. Org. Chem.*, 2009, 74, 6681; (f) V. R. Chintareddy, K. Wadhwa and J. G. Verkade, *J. Org. Chem.*, 2009, 74, 8118; (g) K. Wadhwa and J. G. Verkade, *J. Org. Chem.*, 2009, 74, 4368.
- 16 R. Schwesinger and H. Schlemper, *Angew. Chem., Int. Ed. Engl.*, 1987, **26**, 1167–1169.
- 17 For an excellent review, see: (a) T. Ishikawa, Superbases for Organic Synthesis, John Wiley & Sons Ltd, Chichester, 2009, for selected examples, see: (b) T. Imahori and Y. Kondo, J. Am. Chem. Soc., 2003, 125, 8082; (c) K. Kobayashi, M. Ueno and Y. Kondo, Chem. Commun., 2006, 3128; (d) M. Ueno, M. Yonemoto, M. Hashimoto, A. E. H. Wheatley, H. Naka and Y. Kondo, Chem. Commun., 2007, 2264; (e) K. Kobayashi, M. Ueno, H. Naka and Y. Kondo, Chem. Commun., 2007, 2264; (e) K. Kobayashi, M. Ueno, H. Naka and Y. Kondo, Chem. Commun., 2008, 3780; (f) K. Kobayashi, M. Ueno, H. Naka and Y. Kondo, Chem.-Eur. J., 2009, 15, 9805; (g) Y. Araki, K. Kobayashi, M. Yonemoto and Y. Kondo, Org. Biomol. Chem., 2011, 9, 78; (h) H. Kawai, Z. Yuan, E. Tokunaga and N. Shibata, Org. Biomol. Chem., 2013, 11, 1446–1450.
- 18 (a) M. Ueno, C. Hori, K. Suzawa, M. Ebisawa and Y. Kondo, *Eur. J. Org. Chem.*, 2005, 2005, 1965–1968; (b) K. Suzawa, M. Ueno, A. E. H. Wheatley and Y. Kondo, *Chem. Commun.*, 2006, 4850–4852; (c) H. Naka, D. Koseki and Y. Kondo, *Adv. Synth. Catal.*, 2008, 350, 1901.
- 19 J. J. Song, Z. Tan, J. T. Reeves, F. Gallou, N. K. Yee and C. H. Senanayake, *Org. Lett.*, 2005, 7, 2193.