

Published on Web 12/13/2004

An Extremely Stable and Orthogonal DNA Base Pair with a Simplified Three-Carbon Backbone

Lilu Zhang and Eric Meggers*

Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104

Received October 6, 2004; E-mail: meggers@sas.upenn.edu

DNA plays an increasingly important role in bioorganic chemistry, biotechnology, and material science due to its ingeniously simple complementary base-pairing rule: A pairs with T, and G with C. It is apparent that modifying the chemical and physical properties of DNA without affecting the complementary base pairing will have a tremendous impact on future applications. For example, increasing the electrical conductivity of DNA by chemical modification of the base pairs may allow for the self-assembly of complex molecular-scale electrical devices.¹

We started out with the goal to design functional unnatural nucleotides that are structurally simplified and thus much easier to access in large quantities, while retaining the desired base-pairing properties. For example, a simple acyclic DNA-like backbone would reduce the synthetic complexity dramatically. However, Schneider and Benner demonstrated more than a decade ago, that even a single flexible acyclic nucleotide in DNA already leads to a strong destabilization of the duplex.² We envisioned that it may still be possible to use a simplified backbone by overcompensating the potential loss of preorganization with interstrand base-pairing strength. We here present a surprising outcome of this design strategy which resulted in an exceptionally stable and orthogonal artificial base pair having a minimal acyclic three-carbon backbone.

First, we designed a base-pairing scheme with superior stability. Base-pairing schemes with alternate H-bonding,³ pairing through hydrophobic packing,⁴ and metal coordination-driven base pairing⁵ have been developed. We decided to create a DNA base pair with superior stability by combining hydrophobic forces and strong metal coordination in one base pair as shown in Figure 1. We chose 8-hydroxyquinoline as a promising candidate because it has an extended hydrophobic aromatic surface, ideal for undergoing hydrophobic stacking in DNA, in addition to being an exceptionally strong bidentate ligand for a variety of transition metal ions.⁶

The nucleotide **HQ** containing a regular 2'-deoxyribose backbone (see Figure 1) was synthesized following a lengthy standard route (13 steps in the longest linear sequence plus one diastereomer separation) and incorporated in the middle of a 15mer deoxyoligonucleotide as shown in Figure 2. In the absence of any transition metal ions, a 1:1 mixture of complementary 15mer oligonucleotides containing the **HQ:HQ** homopair displays a melting temperature (T_M) of 36.1 °C, as determined by UV-monitored thermal denaturation. For comparison, the duplexes containing a dA:dT or dG: dC instead of **HQ:HQ** melt at 41.3 °C and 44.6 °C, respectively. Mismatches between natural bases show stabilities of 31 °C (dG: dT) or less under our experimental conditions. Thus, **HQ:HQ** forms quite stable base pairing even in absence of any transition metal ions. This effect can be attributed to the high hydrophobicity of **HQ**.

Upon the addition of just one equivalent of Cu^{2+} , the melting point increases by 29 °C reaching a T_M of 65 °C. The T_M of **HQ**: **HQ** in the presence of Cu^{2+} is more than 20 °C higher compared to the natural base pairs dA:dT and dG:dC (Figure 2A). To the

Figure 1. Design rationale for a simplified completely artifical base pair in DNA.

5'-C-A-C-A-T-T-A-**X**-T-G-T-T-G-T-A-3'

Figure 2. UV-melting curves of duplex deoxyoligonucleotides with different base pairs at position **X**:**Y**. (A) **HQ**:**HQ** ($T_{\rm M} = 36.1$ °C without Cu²⁺, $T_{\rm M} = 65$ °C with 1 equiv of Cu²⁺), dA:dT ($T_{\rm M} = 41.3$ °C), dG:dC ($T_{\rm M} = 44.6$ °C). (B) Melting curves of mismatches with **HQ** in the presence of 1 equiv of Cu²⁺. **HQ**:T ($T_{\rm M} < 30$ °C), **HQ**:C ($T_{\rm M} = 32.5$ °C), **HQ**:A ($T_{\rm M} = 34.7$ °C), **HQ**:G ($T_{\rm M} = 35.4$ °C). The hyperchromicity was in all cases 15–24%. Experiments were performed in 10 mM sodium phosphate, pH 7.0, 50 mM NaClO₄, with 2 μ M of each single strand, and under argon atmosphere to prevent photooxidation of **HQ**. Cu(NO₃)₂ was used as the source for Cu²⁺.

best of our knowledge, a base pair with such strong interstrand pairing properties is unprecedented. It can be expected that in this

Figure 3. Synthesis of the C3-nucleotide 4 for the automated nucleic acid synthesis. (a) First, addition of sec-BuLi (THF, -78 °C) to 2. followed by MgBr2 (in situ prepared from BrCH2CH2Br and Mg), and cat. CuI, followed by the addition of epoxide 1 (69%). (b) TBSCl, DMAP, imidazole. (c) Cs_2 -CO₃. (d) tBuCOCl, DMAP. (e) TBAF (f) (tPr₂N)(OCH₂CH₂CN)PCl, $(iPr)_2$ EtN (49% over steps b-f).

base pair the two 8-hydroxyquinoline ligands coordinate a central Cu2+ ion in an approximately square planar fashion as indicated in Figure 1.5b

To test the pairing specificity of the Cu2+-dependent HQ:HQ base pair, we measured the $T_{\rm M}$'s of all mismatches with the natural strands. The melting curves are shown in Figure 2B. Compared to $HQ:HQ(+Cu^{2+})$ the mispairs with natural bases lead to a strong decrease in melting temperatures of more than 30 °C. Thus, the base pair $HQ:HQ(+Cu^{2+})$ shows exceptionally strong base-pairing strength and orthogonality and is therefore a promising candidate to reduce the complexity of the backbone in the next step.

We chose the three-carbon derivative C₃HQ as shown in Figures 1 and 3. This backbone is derived from Eschenmoser's L-athreofuranosyl nucleoside7 by eliminating a CH₂O unit from the tetrahydrofuran ring, and we envisioned that this scaffold is economically accessible by ring opening of "spring-loaded" epoxides.8

Accordingly, inexpensive commercially available S-(-)-glycidol was tritylated to 1 and the epoxide regioselectively ring-opened with metalated 2 to yield 3 in 69% yield (Figure 3). Exchange of the protection group at the 8-hydroxyquinoline followed by introduction of a phosphoramidite yielded the building block 4 for the automated oligonucleotide synthesis. This procedure is short and simple and does not require any separation of isomers.

We next investigated the stability of this new homopair C₃HQ: C₃HQ in duplex DNA. Without Cu²⁺, no stable duplex formation is observed (Figure 4A). However, upon the addition of just one equivalent of Cu²⁺, C₃HQ:C₃HQ gives cooperative UV-melting with a T_M of 70.5 °C. The UV-melting experiments are in agreement with CD measurements, which demonstrate a temperature-dependent melting of a B-form duplex (Figure 4B). It is very surprising that the stability of the simplified base pair $C_3HQ:C_3HQ(+Cu^{2+})$ surpasses that of HQ:HQ(+Cu²⁺) ($\Delta T_{\rm M}$ = + 5.5 °C). This is even more remarkable since the C3-backbone is strongly destabilizing for the natural A:T base pair ($T_{\rm M}$ < 30 °C). We hypothesize that the expanded C1'-C1' distance in the 8-hydroxyquinoline base pair can be accommodated with less strain in the slimmer acyclic backbone. It is also noteworthy that no stable base pairing is observed between C_3HQ and the natural deoxynucleotides (T_M 's < 25 °C, 1 equiv of Cu^{2+}).

In summary, we have introduced a strategy for the design of a simplified artificial base pair. The nucleotide C3HQ with a minimal three-carbon backbone displays unprecedented pairing strength and orthogonality in a homopair C3HQ:C3HQ in the presence of one

Figure 4. (A) UV-melting curves of the shown duplex above (2 μ M each strand) containing the acyclic nucleobase pair C_3HQ : C_3HQ without and with one equivalent of Cu^{2+} ($T_M = 70.5$ °C). The hyperchromicity is 16% and 18%, respectively. (B) CD-spectra of the same duplex (10 μ M each strand) in the presence of 1 equiv of Cu²⁺ at 80, 70, 60, 50, 40, and 25 °C. Experiments were performed in 10 mM sodium phosphate, pH 7.0, 50 mM NaClO₄, and under argon atmosphere. Cu(NO₃)₂ was used as the source for Cu2+

equivalent of Cu²⁺. It is quite a surprise that the pairing stability and selectivity even exceeds those of the related base pair HQ: HQ, having the regular deoxyribose backbone. This discovery of a synergy between an artificial backbone and base-pairing scheme opens new avenues for the economical design of modified oligonucleotides with tailored properties.

Acknowledgment. We thank the University of Pennsylvania, LRSM-MRSEC, and the ACS Petroleum Research Fund (Type G Grant) for supporting this research. We are also grateful for support from the laboratories of Dr. Ivan J. Dmochowski (UV-melting) and Dr. Feng Gai (CD-measurements). We thank Dr. Adam Peritz for support with oligonucleotide synthesis.

Supporting Information Available: Experimental procedures for the synthesis of HQ, C3HQ and their incorporation into DNA. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1)See, for example: Okamoto, A.; Tanaka, K.; Saito, I. J. Am. Chem. Soc. **2003**, *125*, 5066–5071. Schneider, K. C.; Benner, S. A. J. Am. Chem. Soc. **1990**, *112*, 453–455.
- (3) Base pairs in DNA with altered H-bonding: Benner, S. A. Acc. Chem. Res. 2004, 37, 784-797.
- (4) Hydrophobic base pairs in DNA: (a) Kool, E. T.; Morales, J. C.; Guckian,
- Hydophole base pairs in DNA: (a) Root, E. 1., Molates, J. C., Ottkali,
 K. M. Angew. Chem., Int. Ed. 2000, 39, 990–1009. (b) Henry, A. A.;
 Romesberg, F. E. Curr. Opin. Chem. Biol. 2003, 7, 727–733.
 Metallo-base pairing in DNA: (a) Meggers, E.; Holland, P. L.; Tolman,
 W. B.; Romesberg, F. E.; Schultz, P. G. J. Am. Chem. Soc. 2000, 122, W. D., Rollinsberg, T. J., Schultz, P. G., Schultz, P. G. J. Am. Chem. Soc. 2001, 123, 12364–12367. (c) Weizman, H.; Tor, Y. J. Am. Chem. Soc. 2001, 123, 3375–3376. (d) Tanaka, K.; Yamada, Y.; Shionoya, M. J. Am. Chem. Soc. 2002, 124, 8802-8803. (e) Tanaka, K.; Binongia, H., Kato, T.; Toyama, N.; Shiro, M.; Shionoya, M. J. Am. Chem.
 Soc. 2002, 124, 12494–12498. (f) Zimmermann, N.; Meggers, E.; Schultz,
 P. G.; J. Am. Chem. Soc. 2002, 124, 13684–13685. (g) Zimmermann,
 N.; Meggers, E.; Schultz, P. G. Bioorg. Chem. 2004, 32, 13–25.
- Critically Selected Stability Constants of Metal Complexes Database, NIST, 2001. For example, the dissociation constant of a 1:1 complex with Cu^{2+} is around 1×10^{-12} M.
- Schöning, K.-U.; Schölz, P.; Guntha, S.; Wu, X.; Krishnamurthy, R.; Eschenmoser, A. *Science* 2000, 290, 1347–1351.
 (8) Epoxides are one of the priviledged functional group for "click chemis-
- Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004-2021.

JA043904J