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Abstract—Structure-activity relationship studies on the phenyl ring of 3-(5-pyridin-2-yl-2 H-tetrazol-2-yl)benzonitrile 2 led to the
discovery that small, non-hydrogen bond donor substituents at the 3-position led to a substantial increase in in vitro potency. In
particular, 3-fluoro-5-(5-pyridin-2-yl-2 H-tetrazol-2-yl)benzonitrile (7) is a highly potent and selective mGlu5 receptor antagonist
with good rat pharmacokinetics, brain penetration, and in vivo receptor occupancy.

© 2005 Elsevier Ltd. All rights reserved.

The excitatory neurotransmitter glutamate activates
both ionotropic receptors and G protein-coupled metab-
otropic glutamate (mGlu) receptors. To date, eight
mGlu receptors have been identified and they are catego-
rized as follows: Group I includes mGlul and mGluS5
receptors, Group II comprises mGlu2 and mGlu3 recep-
tors, and Group III encompasses the mGlu4 and
mGlu6-8 subtypes.! The Group I receptors activate
phospholipase C, which results in the mobilization of
intracellular calcium.? A number of reports have indicat-
ed that selective antagonism of mGlu5 receptors may im-
prove disease states, such as anxiety and depression,>®
pain,® drug dependence,'® and mental retardation.!!
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Recent publications from this laboratory have described
the discovery of MTEP (1), a potent and selective
mGlu5 receptor antagonist.'? In a continuing search
for alternative structural series to diaryl-alkynes deriva-
tives, such as MTEP, we developed a series of heteroa-
romatic azoles.'> Of the 16 N-linked azoles examined,
tetrazole 2 was found to be the most promising in terms
of potency, selectivity,!* brain penetration, and rat
pharmacokinetics. However, tetrazole 2 showed only
moderate in vitro potency and binding affinity. With
the goal of improving the potency of this novel class
of compounds further, we herein describe the struc-
ture—activity relationship studies (SAR) around the
phenyl ring of 2.

The tetrazole derivatives described herein were con-
structed, as outlined in Scheme 1. Thus, a 1,3-dipolar
cycloaddition was employed between a diazonium salt
(derived from the corresponding 3-aminobenzonitrile)
and a tosyl hydrazone (derived from condensation of
2-pyridylaldehyde with tosyl hydrazide—Scheme 1).!3

Those 3-aminobenzonitriles that were not commercially
available were synthesized by installing the nitrile on the
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Table 1. In vitro data for mGlu5 receptor antagonists
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Scheme 1. Reagents and conditions: (a) Tosyl hydrazide, EtOH, rt. (b)
NaNO,, HCI, H,0, EtOH, 0 °C. (c) NaOH, 0 °C.

corresponding bromide using palladium catalyzed cya-
nation with Zn(CN),. An example is shown in Scheme
2 for the preparation of the key intermediate 3-amino-
5-fluorobenzonitrile.

Those derivatives with an alkoxy substituent were pre-
pared by nucleophilic displacement of the fluoro substi-
tuent of 7 with an alcohol in the presence of cesium
carbonate at an elevated temperature (Scheme 3).

The in vitro functional activity of mGluS receptor
antagonists was determined using a cell-based, high-
throughput assay that measured the changes in cytosolic
Ca®" concentrations by fluorescence detection.'® Com-
pounds were also tested in a bmdlng assay that mea-
sured the displacement of [H]3-methoxy-5-(pyridin-2-
ylethynyl)pyridine from rat cortical membranes.!” The
mGlu$5 receptor potency data for the initial set of tetra-
zole derivatives synthesized are shown in Table 1.

We initially examined the effect of chloride substitution
at different positions around the phenyl ring of 2, while
maintaining the 5-nitrile substituent. Thus, derivatives 3,
5, and 6 all lost potency, relative to the parent 2; howev-
er, 4 with a 3-chloro-5-nitrile orientation showed a sub-
stantial improvement in potency (mGlu5 K; =26 nM).
Encouraged by this, we decided to focus on the 3,5-ori-
entation and to investigate the effect of other substitu-
ents at the 3-position, while fixing the nitrile group at
the 5-position.

_N
Br Br N Br N Z
a \©/ b
—_— —_—
F F F

Scheme 2. Reagents and conditions: (a)—(i) acetamide, Cul, trans-1,2-
diaminocyclohexane, K,COs, toluene, 130 °C, 18 h (76%); (i) NaOH
(99%). (b) Zn(CN),, Pd,dbas, dppf, DMF, 90 °C, 18 h (85%).
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7 R = H, Me, CH,(c-propyl),

Scheme 3. Reagents and conditions: (a) ROH, Cs,CO;, DMF, 140 °C,
16 h.
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Table 1 (continued)

Table 3. Rat occupancy and brain penetration for 2 and 7

Compound Structure mGlu5 Ca** mGlu5

flux ICs,  K; (nM)®
(nM)*
N
N N
14 A 975 271
N=\’ 4)>
(e]
N
15 \N‘ N, >1000 >600
N
N:N/
OCH,Ph
N
B /
16 NN 15 16

# Using glutamate (10 uM) as agonist.
® Displacement by test compounds of [*H]3-methoxy-5-(pyridin-2-
ylethynyl)pyridine from rat cortical membranes.

Thus, it was found that small, non-hydrogen bond do-
nor groups at the 3-position, such as fluorine (7), ni-
trile (8), methyl (10), and methoxy (11), all had good
levels of mGlu5 receptor antagonist activity (mGlu5
K; = 6-18 nM). Further, electronic nature of the substi-
tuent was not important, as an electron-donating
methoxy substituent 11 (K; =6 nM) and an electron-
withdrawing nitrile 8 (K; =18 nM) are both potent.
However, introduction of a hydrogen bond donor
group at the 3-substituent led to a loss of potency
against the mGlu5 receptor. Thus, aniline 12
(K; =95 nM) or phenol 13 (K; = 318 nM) both lost sig-
nificant potency compared to 4. Similarly, increasing
the steric bulk of the alkoxy substituent of 11
(K; = 6 nM) to methylenecyclopropyl 14 (K; =271 nM)
or benzyl 15 (K; = >600 nM) both resulted in a loss of
potency. One interesting exception to the loss of
potency with increasing steric bulk was the 3-pyridyl-
oxy derivative 16 (K; = 16 nM). The unexpected activ-
ity of this compound probably reflects the fact that
the 3-pyridyloxy group is a potent nitrile replacement
in this series of mGlu5 receptor antagonists, as dis-
closed previously.'®

Having shown that a significant increase in in vitro
potency against the mGlu5 receptor may be achieved
with derivatives, such as 7 and 10, we next sought to

Table 2. Rat pharmacokinetic data for 2, 7, and 10
Cl, (mL/min/kg)* V4 (L/kg)* t1p ()" F%° Cax (BM)°

2 33 5.0 6.9 100 5.8
7 17 1.1 29 26 2.5
10 50 1.4 0.4 15 0.8

42 mg/kg dosed iv (n = 2 Sprague-Dawley rats/group).
®10 mg/kg dosed po (n = 3 Sprague-Dawley rats/group).

Plasma Brain Brain/ Occ EDsy  Occ EDs
levels (uM) levels (uM) plasma (%) (mg/kgip) (mg/kg po)
2 10° 15° 150 3.0° 3.0°
7 274 2.4¢ 90 1.3° 3.6°

#Measured at 1 h following 10 mg/kg dose ip.

®Measured 1h post-administration (n = 5-6 Sprague—Dawley rats/
group).

¢ Measured 30 min post-administration (n = 6-7 Sprague-Dawley rats/
group).

9 Measured at 1 h following 3 mg/kg dose ip.

®Measured 2 h post-administration (n=5-7 Sprague-Dawley rats/
group).

profile these compounds in terms of rat pharmacokinet-
ics (Table 2).

Although not as impressive as parent tetrazole 2, fluoro-
derivative 7 still exhibits promising pharmacokinetics
with good bioavailability and half-life in rats
(F = 26%; t1» = 2.9 h). Methyl derivative 10 is also bio-
available in rats (F = 15%); however, it suffers from high
clearance and a short half-life.

With its excellent in vitro potency against the mGlu5
receptor (Ca** flux = 4 nM; K; = 14 nM) and encourag-
ing rat pharmacokinetics, we next profiled 7 in terms of
rat brain penetration and in vivo receptor occupancy
(Table 3).19-20

Similar to the parent tetrazole 2, fluoro-derivative 7 has
good rat brain penetration (90% for 7) with measured
drug levels in the brain of 2.4 uM, following a 3 mg/kg
ip dose. Together with the high in vitro potency against
the mGlu5 receptor, this leads to an excellent occupancy
EDs of 1.3 mg/kg ip for 7 (for 2, EDsy = 3.0 mg/kg ip).
When examining the po dosing route, reflecting its oral
bioavailability of 26%, 7 has an EDs, of 3.6 mg/kg po,
while the parent tetrazole 2 with 100% bioavailability
has an EDs, of 3.0 mg/kg po.

Having shown the beneficial effect of substituting 2 with
a 3-fluoro substituent on in vitro potency, we next
attempted to apply this SAR to related series of mGlu5
receptor antagonists (Table 4).

Thus, substitution of imidazole 17 (K; = 34 nM),?! pyr-
role 19 (K; = >600 nM), '3 and bi-aryl 21 (K; = 69 nM),??
with a 3-fluoro substituent on the phenyl ring to give 18
(K;=9.3nM), 20 (K;=5nM), and 22 (K; =37 nM),
respectively, led in each case to an increase in mGlu5
receptor potency.

In conclusion, SAR studies on the phenyl ring of 2 have
shown that small, non-hydrogen bond donor groups at
the 3-position increase in vitro potency against the
mGlu5 receptor. Specifically, the 3-fluoro derivative 7
shows excellent in vitro potency, good rat pharmacoki-
netics, and excellent in vivo rat receptor occupancy
and brain penetration. Subsequent studies have shown
that installation of a 3-fluoro substituent in other scaf-
folds also leads to an improvement in in vitro potency.
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Table 4. In vitro data for mGlu5 receptor antagonists

Compound Structure
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