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Abstract—Structure–activity relationship studies on the phenyl ring of 3-(5-pyridin-2-yl-2H-tetrazol-2-yl)benzonitrile 2 led to the
discovery that small, non-hydrogen bond donor substituents at the 3-position led to a substantial increase in in vitro potency. In
particular, 3-fluoro-5-(5-pyridin-2-yl-2H-tetrazol-2-yl)benzonitrile (7) is a highly potent and selective mGlu5 receptor antagonist
with good rat pharmacokinetics, brain penetration, and in vivo receptor occupancy.
� 2005 Elsevier Ltd. All rights reserved.
The excitatory neurotransmitter glutamate activates
both ionotropic receptors and G protein-coupled metab-
otropic glutamate (mGlu) receptors. To date, eight
mGlu receptors have been identified and they are catego-
rized as follows: Group I includes mGlu1 and mGlu5
receptors, Group II comprises mGlu2 and mGlu3 recep-
tors, and Group III encompasses the mGlu4 and
mGlu6–8 subtypes.1 The Group I receptors activate
phospholipase C, which results in the mobilization of
intracellular calcium.2 A number of reports have indicat-
ed that selective antagonism of mGlu5 receptors may im-
prove disease states, such as anxiety and depression,3–8

pain,9 drug dependence,10 and mental retardation.11
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Recent publications from this laboratory have described
the discovery of MTEP (1), a potent and selective
mGlu5 receptor antagonist.12 In a continuing search
for alternative structural series to diaryl-alkynes deriva-
tives, such as MTEP, we developed a series of heteroa-
romatic azoles.13 Of the 16 N-linked azoles examined,
tetrazole 2 was found to be the most promising in terms
of potency, selectivity,14 brain penetration, and rat
pharmacokinetics. However, tetrazole 2 showed only
moderate in vitro potency and binding affinity. With
the goal of improving the potency of this novel class
of compounds further, we herein describe the struc-
ture–activity relationship studies (SAR) around the
phenyl ring of 2.

The tetrazole derivatives described herein were con-
structed, as outlined in Scheme 1. Thus, a 1,3-dipolar
cycloaddition was employed between a diazonium salt
(derived from the corresponding 3-aminobenzonitrile)
and a tosyl hydrazone (derived from condensation of
2-pyridylaldehyde with tosyl hydrazide—Scheme 1).15

Those 3-aminobenzonitriles that were not commercially
available were synthesized by installing the nitrile on the
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Table 1. In vitro data for mGlu5 receptor antagonists
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Scheme 1. Reagents and conditions: (a) Tosyl hydrazide, EtOH, rt. (b)

NaNO2, HCl, H2O, EtOH, 0 �C. (c) NaOH, 0 �C.
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corresponding bromide using palladium catalyzed cya-
nation with Zn(CN)2. An example is shown in Scheme
2 for the preparation of the key intermediate 3-amino-
5-fluorobenzonitrile.

Those derivatives with an alkoxy substituent were pre-
pared by nucleophilic displacement of the fluoro substi-
tuent of 7 with an alcohol in the presence of cesium
carbonate at an elevated temperature (Scheme 3).

The in vitro functional activity of mGlu5 receptor
antagonists was determined using a cell-based, high-
throughput assay that measured the changes in cytosolic
Ca2+ concentrations by fluorescence detection.16 Com-
pounds were also tested in a binding assay that mea-
sured the displacement of [H3]3-methoxy-5-(pyridin-2-
ylethynyl)pyridine from rat cortical membranes.17 The
mGlu5 receptor potency data for the initial set of tetra-
zole derivatives synthesized are shown in Table 1.

We initially examined the effect of chloride substitution
at different positions around the phenyl ring of 2, while
maintaining the 5-nitrile substituent. Thus, derivatives 3,
5, and 6 all lost potency, relative to the parent 2; howev-
er, 4 with a 3-chloro-5-nitrile orientation showed a sub-
stantial improvement in potency (mGlu5 Ki = 26 nM).
Encouraged by this, we decided to focus on the 3,5-ori-
entation and to investigate the effect of other substitu-
ents at the 3-position, while fixing the nitrile group at
the 5-position.
BrBr

F

N Br

F

N

F

N

a b

Scheme 2. Reagents and conditions: (a)—(i) acetamide, CuI, trans-1,2-

diaminocyclohexane, K2CO3, toluene, 130 �C, 18 h (76%); (ii) NaOH

(99%). (b) Zn(CN)2, Pd2dba3, dppf, DMF, 90 �C, 18 h (85%).
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Scheme 3. Reagents and conditions: (a) ROH, Cs2CO3, DMF, 140 �C,
16 h.
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Table 3. Rat occupancy and brain penetration for 2 and 7

Plasma

levels (lM)

Brain

levels (lM)

Brain/

plasma (%)

Occ ED50

(mg/kg ip)

Occ ED50

(mg/kg po)

2 10a 15a 150 3.0b 3.0c

7 2.7d 2.4d 90 1.3b 3.6e

aMeasured at 1 h following 10 mg/kg dose ip.
bMeasured 1 h post-administration (n = 5–6 Sprague–Dawley rats/

group).
cMeasured 30 min post-administration (n = 6–7 Sprague–Dawley rats/

group).
dMeasured at 1 h following 3 mg/kg dose ip.
eMeasured 2 h post-administration (n = 5–7 Sprague–Dawley rats/

group).

Table 1 (continued)

Compound Structure mGlu5 Ca2+

flux IC50

(nM)a

mGlu5

Ki (nM)b
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aUsing glutamate (10 lM) as agonist.
b Displacement by test compounds of [3H]3-methoxy-5-(pyridin-2-

ylethynyl)pyridine from rat cortical membranes.
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Thus, it was found that small, non-hydrogen bond do-
nor groups at the 3-position, such as fluorine (7), ni-
trile (8), methyl (10), and methoxy (11), all had good
levels of mGlu5 receptor antagonist activity (mGlu5
Ki = 6–18 nM). Further, electronic nature of the substi-
tuent was not important, as an electron-donating
methoxy substituent 11 (Ki = 6 nM) and an electron-
withdrawing nitrile 8 (Ki = 18 nM) are both potent.
However, introduction of a hydrogen bond donor
group at the 3-substituent led to a loss of potency
against the mGlu5 receptor. Thus, aniline 12
(Ki = 95 nM) or phenol 13 (Ki = 318 nM) both lost sig-
nificant potency compared to 4. Similarly, increasing
the steric bulk of the alkoxy substituent of 11
(Ki = 6 nM) to methylenecyclopropyl 14 (Ki = 271 nM)
or benzyl 15 (Ki = >600 nM) both resulted in a loss of
potency. One interesting exception to the loss of
potency with increasing steric bulk was the 3-pyridyl-
oxy derivative 16 (Ki = 16 nM). The unexpected activ-
ity of this compound probably reflects the fact that
the 3-pyridyloxy group is a potent nitrile replacement
in this series of mGlu5 receptor antagonists, as dis-
closed previously.18

Having shown that a significant increase in in vitro
potency against the mGlu5 receptor may be achieved
with derivatives, such as 7 and 10, we next sought to
Table 2. Rat pharmacokinetic data for 2, 7, and 10

Clp (mL/min/kg)a Vd (L/kg)a t1/2 (h)
a F%b Cmax (lM)b

2 33 5.0 6.9 100 5.8

7 17 1.1 2.9 26 2.5

10 50 1.4 0.4 15 0.8

a 2 mg/kg dosed iv (n = 2 Sprague–Dawley rats/group).
b 10 mg/kg dosed po (n = 3 Sprague–Dawley rats/group).
profile these compounds in terms of rat pharmacokinet-
ics (Table 2).

Although not as impressive as parent tetrazole 2, fluoro-
derivative 7 still exhibits promising pharmacokinetics
with good bioavailability and half-life in rats
(F = 26%; t1/2 = 2.9 h). Methyl derivative 10 is also bio-
available in rats (F = 15%); however, it suffers from high
clearance and a short half-life.

With its excellent in vitro potency against the mGlu5
receptor (Ca2+ flux = 4 nM; Ki = 14 nM) and encourag-
ing rat pharmacokinetics, we next profiled 7 in terms of
rat brain penetration and in vivo receptor occupancy
(Table 3).19,20

Similar to the parent tetrazole 2, fluoro-derivative 7 has
good rat brain penetration (90% for 7) with measured
drug levels in the brain of 2.4 lM, following a 3 mg/kg
ip dose. Together with the high in vitro potency against
the mGlu5 receptor, this leads to an excellent occupancy
ED50 of 1.3 mg/kg ip for 7 (for 2, ED50 = 3.0 mg/kg ip).
When examining the po dosing route, reflecting its oral
bioavailability of 26%, 7 has an ED50 of 3.6 mg/kg po,
while the parent tetrazole 2 with 100% bioavailability
has an ED50 of 3.0 mg/kg po.

Having shown the beneficial effect of substituting 2 with
a 3-fluoro substituent on in vitro potency, we next
attempted to apply this SAR to related series of mGlu5
receptor antagonists (Table 4).

Thus, substitution of imidazole 17 (Ki = 34 nM),21 pyr-
role 19 (Ki = >600 nM),13 and bi-aryl 21 (Ki = 69 nM),22

with a 3-fluoro substituent on the phenyl ring to give 18
(Ki = 9.3 nM), 20 (Ki = 5 nM), and 22 (Ki = 37 nM),
respectively, led in each case to an increase in mGlu5
receptor potency.

In conclusion, SAR studies on the phenyl ring of 2 have
shown that small, non-hydrogen bond donor groups at
the 3-position increase in vitro potency against the
mGlu5 receptor. Specifically, the 3-fluoro derivative 7
shows excellent in vitro potency, good rat pharmacoki-
netics, and excellent in vivo rat receptor occupancy
and brain penetration. Subsequent studies have shown
that installation of a 3-fluoro substituent in other scaf-
folds also leads to an improvement in in vitro potency.



Table 4. In vitro data for mGlu5 receptor antagonists

Compound Structure mGlu5 Ca2+

flux IC50 (nM)a
mGlu5

Ki (nM)b
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aUsing glutamate (10 lM) as agonist.
b Displacement by test compounds of [3H]3-methoxy-5-(pyridin-2-yl

ethynyl)pyridine from rat cortical membranes.
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