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Water-soluble PDE4 inhibitors for the treatment of dry eye
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PDE4 inhibitors have the potential to alleviate the symptoms and underlying inflammation associated
with dry eye. Disclosed herein is the development of a novel series of water-soluble PDE4 inhibitors.
Our studies led to the discovery of coumarin 18, which is effective in a rabbit model of dry eye and a tear
secretion test in rats.

� 2010 Elsevier Ltd. All rights reserved.
Dry eye is a disease of the tears and ocular surface.1 Numerous
factors contribute to the onset of the disease, but once dry eye has
developed, inflammation of various ocular surface tissues propa-
gates the disease as both cause and consequence of ocular surface
damage.2 Individuals with dry eye suffer from ocular discomfort
(dry, gritty feeling; itching; stinging/burning; pain/soreness) and
blurred vision.3 Improvement in these symptoms can be affected
by administration of artificial tears, but the relief is transitory as
the underlying inflammation persists.4 Therefore, an agent capable
of reducing inflammation and inducing tear secretion should be an
effective therapy for dry eye.

The phosphodiesterase 4 (PDE4) enzymes regulate a host of bio-
logical processes by degrading the intracellular second messenger
cAMP.5 PDE4 inhibitors have been intensively investigated as anti-
inflammatory therapies because increases in cAMP levels are
known to attenuate inflammatory responses in multiple cell
types.6 Other agents that increase cAMP have been shown to in-
duce tear secretion.7 Therefore, PDE4 inhibitors should serve the
dual role of reducing inflammation and inducing tear secretion
providing an effective treatment for dry eye.

In this letter, we describe our efforts to create a novel, potent
series of PDE4 inhibitors with aqueous solubility compatible with
topical ocular delivery. Furthermore, we disclose efficacy in an
in vivo model for dry eye and an in vivo test for tear secretion.
All rights reserved.

: +1 858 334 4848.
Piclamilast (1) is a potent, selective PDE4 inhibitor.8 The cocrys-
tal structure of piclamilast bound to PDE4B reveals a binding mode
within the active site that results in an exposed region of piclami-
last encompassing the amide carbonyl and C2 of the phenyl ring
(Fig. 1).9 We postulated that appending a flat, fused ring in this re-
gion would provide novel PDE4 inhibitors (2, Fig. 2). Furthermore,
substituents at C2 of 2 would have minimal interaction with the
protein which should allow for a variety of solubilizing groups to
be incorporated without adversely impacting potency. Indeed, a re-
lated series of compounds, represented by 3, has been reported,10

but substitution at N2 is not possible with this flat, unsaturated
phthalazine ring.
Figure 1. Structure of piclamilast (1) bound to PDE4B (pdb:1XM4).
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Figure 2. Generic structure 2 (X, Z = CH, N, O, or a bond; SG = solubilizing group)
and phthalazine 3.
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New scaffolds were prepared as detailed in Table 1. Compounds
were assayed11 for their intrinsic potency against human PDE4B
enzyme,12 as well as their ability to inhibit cAMP hydrolysis in a
cell-based biosensor assay.13 Our initial efforts focused on simple
nitrogen-containing heterocycles where SG = H (4–6). Disappoint-
ingly, a dramatic loss in potency (2 nM ? 0.5–3.3 lM) discouraged
further exploration. Under the presumption that the polar, basic
nitrogens were at the root of potency loss, compounds with oxy-
gen-containing rings were prepared. For benzofuran 7, we ex-
pected that the spatial positioning of the catechol motif and
Table 1
In vitro potency data for novel scaffolds

Compound Structure PDE4B IC50, lMa CNG IC50, lMa

1 — 0.002 0.013
3 — 0.4 1.1

4 3.3 8.2

5 0.5 na

6 2.3 10

7 16 >30

8 >30 >30

9 0.005 0.028

a Value is mean of two or more experiments (na: not active at 70 lM).
pyridine ring would not be ideal, but the possibility of C2 substitu-
tion prompted us to prepare the compound. As expected, 7 is a very
weak PDE4 inhibitor. Initial attempts to prepare analogs with oxy-
gen-containing six-membered rings proved challenging, but even-
tually, chroman 8 was accessed. The lack of activity is not
unexpected when considering the deviation from planarity that
exists within the dihydropyran ring. Coumarin 9 was prepared to
restore planarity. With a biochemical potency of 5 nM and a cell-
based potency of 28 nM, coumarin 9 represents a novel scaffold
of PDE4 inhibitors that is comparable to piclamilast.

Although we were successful in appending a flat, fused ring, the
carbonyl of coumarin 9 is positioned where we initially proposed
to append solubilizing groups. In an effort to evaluate other oppor-
tunities for substitution, we cocrystallized coumarin 9 with PDE4B
(Fig. 3).14 In this complex, the PDE4B enzyme adopts the same con-
formation as that observed in the piclamilast complex.15 Further-
more, 9 binds to the enzyme in an orientation that is nearly
identical to that of piclamilast and more importantly, exposes
one side of the cyclopentyl group. We postulated that if the cyclo-
pentane was replaced with an alkyl chain of sufficient length to
exit the hydrophobic pocket and further attached to a polar, solu-
bilizing group, the resultant PDE4 inhibitors would be both potent
and water soluble.

The results of exploring chain length with a carboxylic acid as
the solubilizing group are shown in Table 2. Initially, acids 10–13
were prepared, and it became immediately clear that our strategy
was feasible. As the length of the alkyl chain was extended from
n = 1 to n = 5 (10–13), the compounds became increasingly more
potent in both the biochemical (1.2 lM ? 17 nM) and cell-based
Figure 3. Structure of coumarin 9 bound to PDE4B (pdb: 3LY2).

Table 2
In vitro potency and solubility data for acid derivatives

Compound n PDE4B IC50, lMa CNG IC50, lMa Solubility mg/mLb

9 — 0.005 0.03 0.0003
10 1 1.180 5.35
11 3 0.080 0.89
12 4 0.043 0.73 0.5
13 5 0.017 0.28 0.9
14 6 0.002 0.12 1.4
15 7 0.002 0.04 0.3
16 8 0.001 0.03 0.3

a Value is mean of three or more experiments except 10 (n = 2).
b Shake-flask solubility (0.1 M phosphate buffer; pH = 7.4).



Figure 4. Inhibition of corneal staining in the rabbit model of lacrimal gland
inflammation-induced dry eye. Inhibition of corneal staining corresponds with
protection of the ocular surface. Percent inhibition is relative to vehicle (*p <0.05,
ANOVA, Dunnett’s post-test). Compounds were administered topically b.i.d. for
4 days. Positive control is the corticosteroid dexamethasone (100 lg/mL).

Figure 5. Increase in tear secretion in rats. Tear secretion was measured by the
phenol red thread test 10 min after topical administration of compound. Percent
increase is relative to untreated animals. Statistical significance is relative to saline
(*p <0.05, ANOVA, Dunnett’s post-test). Positive control is the beta-adrenergic
agonist isoproterenol (10 lg/mL).
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assays. Because the potency was still increasing at n = 5, the alkyl
chain was extended further (14–16), and the potency continued
to improve (17 ? 1 nM). With respect to aqueous solubility, com-
pounds 12–16 had moderate to good solubility, but no clear trend
was observed. Overall, the alkanoic acid side chain with n = 5–6 (13
and 14) provides for potent PDE4 inhibitors that have good water
solubility (0.9, 1.4 mg/mL).

We also employed a basic amine as a solubilizing group. The re-
sults of exploring chain length with a dimethylamino group are
shown in Table 3. As seen with the acids, an improvement in po-
tency was observed as the alkyl chain was lengthened. There was
a dramatic potency enhancement (670 ? 5 nM) from n = 3 to
n = 6 (17–20), but further improvement was minimal (5 ? 2 nM)
from n = 6 to n = 8 (20–22). With respect to aqueous solubility,
amine 18 (n = 4) had very good solubility (1.8 mg/mL), but there
was a significant drop-off (0.06 mg/mL) for 19 (n = 5). Within this
subseries, the dimethylaminobutyl side chain provides for a po-
tent, soluble PDE4 inhibitor.

Having identified a novel series of water soluble PDE4 inhibi-
tors, we sought to demonstrate in vivo efficacy. To explore the
anti-inflammatory nature of our compounds, we utilized the rabbit
model of lacrimal gland inflammation-induced dry eye, in which
corneal staining was used to measure ocular surface health.16 Of
the many new PDE4 inhibitors screened in this model (data not
shown), compound 18 looked to be the most promising, so a full
dose response study was run (Fig. 4). Compound 18 was extremely
effective at protecting the eye, equivalent to the corticosteroid
dexamethasone from 10 ng/mL to 10 lg/mL. To explore the ability
of our compounds to induce tear secretion, we utilized the phenol
red thread test in rats (Fig. 5).17 At doses of 10 lg/mL and 100 lg/
mL, compound 18 was effective at inducing tear secretion. Thus,
compound 18 demonstrates the potential effectiveness of PDE4
inhibitors for the treatment of dry eye.

In summary, we have disclosed the development of a novel ser-
ies of water-soluble PDE4 inhibitors. Our studies led to the discov-
ery of coumarin 18, which is effective in a rabbit model of dry eye
and a tear secretion test in rats. Coumarin 18 substantiates the idea
that PDE4 inhibitors can serve the dual role of reducing inflamma-
tion and inducing tear secretion providing an effective treatment
for alleviating the symptoms and underlying inflammation associ-
ated with dry eye.

Chemistry:18 Compounds 4–6 were synthesized as illustrated in
Scheme 1. Aniline 24 was prepared by nitration, alkylation, and
then reduction of guiacol (23). Heating 24 with Meldrum’s acid
and trimethylorthoformate gave an intermediate enamine that cy-
clized to quinolinone 25 by thermolysis in diphenyl ether. Alkyl-
ation of 26 followed by condensation with malonic acid gave
Table 3
In vitro potency and solubility data for Me2N derivatives

Compound n PDE4B IC50, lMa CNG IC50, lMa Solubility mg/mLb

17 3 0.670 >30
18 4 0.045 1.82 1.8
19 5 0.021 0.66 0.06
20 6 0.005 0.18
21 7 0.003 0.15
22 8 0.002 0.15

a Value is mean of three or more experiments.
b Shake-flask solubility (0.1 M phosphate buffer; pH = 7.4).
acrylic acid 27. Formation of the acyl azide and thermolysis in
diphenylmethane gave isoquinolinone 28. Nitration of 29 followed
by alkylation gave 30. Reduction of the nitro group gave the aniline
which cyclized to quinazolinone 31 upon heating in formamide.
Intermediates 25, 28, and 31 were transformed into their respec-
tive chlorides by treatment with phosphoryl chloride. These chlo-
rides were converted into the desired compounds 4, 5, and 6 by
displacement with 4-amino-3,5-dichloropyridine.

Compounds 7–9 were synthesized as illustrated in Scheme 2.
Bromination of ketone 32 gave an a-bromo ketone. Treatment with
base followed by bromocyclopentane resulted in first, cyclization
onto the adjacent hydroxyl and then, alkylation of the remaining
hydroxyl. The resultant furanone was reduced with sodium boro-
hydride to give 33. Elimination to the benzofuran was spontaneous
when the hydroxyl of 33 was activated. Bromination followed by
coupling with 4-amino-3,5-dichloropyridine gave the desired ben-
zofuran 7. Towards 8, 32 was transformed into a chromenone by
treatment with triethylorthoformate in perchloric acid. Alkylation
and reduction gave chromanone 34. Treatment of 34 with hydrox-



Scheme 1. Reagents and conditions: (a) NaNO3, cat. NaNO2, H2SO4, Et2O, rt, 14 h;
(b) bromocyclopentane, Cs2CO3, CH3CN, reflux, 40 h; (c) 1 atm H2, 10% Pd/C, MeOH,
21 h; (d) Meldrum’s acid, HC(OMe)3, reflux 5 h; (e) Ph2O, 250 �C, 15 min; (f)
bromocyclopentane, K2CO3, CH3CN, reflux, 17 h; (g) malonic acid, piperidine,
pyridine, 100 �C, 2.5 h; (h) Ph2P(O)N3, Et3N, PhMe, rt, 3 h; (i) Ph2CH2, 200–225 �C,
5 h; (j) iPrONO2, nBu4NHSO4, H2SO4, CH2Cl2, 0 �C to rt, 45 min; (k) formamide,
190 �C, 6 h; (l) POCl3, cat. DMF, 1,2-dichloroethane, reflux, 15 h; (m) 4-amino-3,5-
dichloropyridine, NaH, DMF, 120 �C, 15 h from 25 and 28, or rt, 30 min from 31.

Scheme 2. Reagents and conditions: (a) CuBr2, EtOAc, CHCl3, reflux, 16 h; (b)
K2CO3, CH3CN, rt, 2 h, then bromocyclopentane, reflux, 16 h; (c) NaBH4, THF, MeOH,
rt, 1 h; (d) CBr4, PPh3, CH2Cl2, 0 �C to rt, 30 min; (e) Br2, CS2, 0 �C, 1 h, then NaOEt,
EtOH, rt, 16 h; (f) 4-amino-3,5-dichloropyridine, Pd2(dba)3, X-phos, NaOtBu, PhMe,
110 �C, 2 h; (g) HClO4, HC(OEt)3, rt, 30 min, filter, then H2O, 90 �C, 5 min; (h)
bromocyclopentane, K2CO3, DMF, 100 �C, 3 h; (i) 1 atm H2, 10% Pd/C, PhMe, 7 d; (j)
NH2OH�HCl, K2CO3, EtOH, 80 �C, 6 h; (k) 1 atm H2, 10% Pd/C, THF, MeOH, 3.5 d; (l)
nBuLi, THF, �78 to 0 �C, then 3,4,5-trichloropyridine, reflux, 2 h; (m) bromocycl-
opentane, K2CO3, DMF, 110 �C, 17 h; (n) NaH, Et2CO3, reflux, 1 h; (o) KOtBu, tBuOH,
reflux, 4 d; (p) NH4OAc, m-xylene, reflux, 3 h; (q) NaH, 3,4,5-trichloropyridine,
DMSO, rt, 4 h.

Scheme 3. Reagents and conditions: (a) concd HCl, rt, 1 h; (b) Br(CH2)nCO2Et or
Br(CH2)nBr, NaH, DMSO, rt, 3–9 h; (c) LiOH, THF, MeOH, rt, 2–4 h; (d) 2 M Me2NH in
THF, DMSO, rt, 1–5 h.
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ylamine followed by hydrogenation gave an aminochroman which
was reacted with 3,4,5-trichloropyridine to give the desired chro-
man 8. Towards 9, 32 was alkylated with bromocyclopentane, acyl-
ated with diethylcarbonate, and then cyclized to hydroxycoumarin
35. Heating 35 with ammonium acetate in m-xylene provided an
aminocoumarin which was reacted with 3,4,5-trichloropyridine
to give the desired coumarin 9.

Compounds 10–22 were synthesized as illustrated in Scheme 3.
Dealkylation of 36 (prepared in analogous fashion as 9) with concd
HCl gave phenol 37. Subsequent alkylation with an ethyl bro-
moalkanoate or with a 1,n-dibromoalkane gave intermediates 38
and 39, respectively. Saponification of esters 38 gave the desired
acids 10–16. Displacement of bromides 39 with dimethylamine
gave amines 17–22.
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