Bioorganic & Medicinal Chemistry Letters 21 (2011) 5493-5497

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Identification of pyridazin-3-one derivatives as potent, selective histamine H₃ receptor inverse agonists with robust wake activity

Robert L. Hudkins^{*}, Lisa D. Aimone, Thomas R. Bailey, Robert J. Bendesky, Reddeppa reddy Dandu, Derek Dunn, John A. Gruner, Kurt A. Josef, Yin-Guo Lin, Jacquelyn Lyons, Val R. Marcy, Joanne R. Mathiasen, Babu G. Sundar, Ming Tao, Allison L. Zulli, Rita Raddatz, Edward R. Bacon

Discovery Research, Cephalon, Inc., 145 Brandywine Parkway, West Chester, PA 19380, USA

ARTICLE INFO

Article history: Received 26 May 2011 Revised 23 June 2011 Accepted 24 June 2011 Available online 30 June 2011

Keywords: Histamine H₃ H₃ inverse agonist CEP-26401 Pyridazin-3-one Sleep-wake

Histamine elicits physiological responses mediated by four Gprotein coupled receptors (H_1R-H_4R) and exerts a variety of functions in the central nervous system (CNS).¹ H_1 and H_2 receptors in the periphery are involved in the allergic response and gastric acid secretion, respectively, and have been some of the more successful drug target classes over the past 50 years. The H_4 receptor is expressed mainly in mast cells, eosinophils, and tissues involved in the immune response, and may play a role in inflammation and pain.² The H_3 receptor (H_3R) in the brain is primarily localized presynaptically, where it functions both as an autoreceptor to modulate histamine release and as an inhibitory heteroreceptor regulating the release of multiple neurotransmitters, including acetylcholine (ACh), dopamine (DA), norepinephrine (NE) and serotonin (5-HT).¹ While activation of the H_3R results in the inhibition of neurotransmitter release, blockade of H_3R by selective antagonists or inverse agonists can reverse the histamine-medi-

tion of neurotransmitter release, blockade of H_3R by selective antagonists or inverse agonists can reverse the histamine-mediated inhibition of neurotransmitter release, leading to enhanced release. H_3Rs by virtue of their localization and function regulate a variety of neurotransmitters that are thought to be involved in attention, sleep and cognition.^{1c-i} The discovery of H_3R antagonists are of current interest, with potential utility in addressing a variety of CNS disorders associated with attention and cognitive deficits, including deficits in wakefulness, attention–deficit hyperactivity

disorder (ADHD), Alzheimer's disease (AD), mild cognitive

ABSTRACT

H₃R structure–activity relationships on a novel class of pyridazin-3-one H₃R antagonists/inverse agonists are disclosed. Modifications of the pyridazinone core, central phenyl ring and linker led to the identification of molecules with excellent target potency, selectivity and pharmacokinetic properties. Compounds **13** and **21** displayed potent functional H₃R antagonism in vivo in the rat dipsogenia model and demonstrated robust wake activity in the rat EEG/EMG model.

© 2011 Elsevier Ltd. All rights reserved.

impairment, and schizophrenia. Several clinical candidates (Ia–Ie) have advanced into trials (Fig. 1).^{1g–m}

We identified a novel class of pyridazin-3-one H_3R antagonists/ inverse agonists with exceptional drug properties, safety and in vivo profiles.³ The preliminary structure–activity relationships (SAR) and characterization of **1** (CEP-26401, irdabisant) and Nmethyl **2** were recently disclosed.⁴ In this paper we report SAR around the pyridazinone core, central phenyl ring and the linker leading to the identification of molecules with excellent target

Figure 1. Structures of clinical H₃R antagonists.

^{*} Corresponding author. Tel.: +1 610 738 6283.

E-mail address: rhudkins@cephalon.com (R.L. Hudkins).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2011.06.108

potency and selectivity, pharmacokinetic properties and potent in vivo wake-promoting activity in the rat.

The N²-substituted targets (e.g. **3–8**) were synthesized using our previously described method outlined in Scheme 1.^{3,4} Cyclocondensation of 4-(4-methoxyphenyl)-4-oxobutyric acid 23 (or ester) with (N-substituted)hydrazine,^{5a} oxidation of the resulting 4,5-dihydropyridazinone 24 (MnO₂, CuCl₂ or SeO₂/HOAc) to 25,^{5b} followed by O-demethylation produced phenol intermediates 26 in very good yield and purity. Alkylation of 26 with 3-bromo-1chloropropane provided chloroalkyl intermediates that were reacted with R-2-methylpyrrolidine to produce targets 3-8. In an analogous manner, ring substituted analogues (e.g. 13-18) were synthesized starting with a phenyl substituted keto-acid or ester 23. An alternative approached was employed for 3-cyano 19 using a previously described Suzuki coupling. 5-Boranyl-2-[3-((R)-2methyl-pyrrolidin-1-yl)-propoxyl-benzonitrile with 3.6-dichloropyridazine and hydrolysis of the intermediate chloropyridazine gave **19**.⁴ The *S*- and *R*-methyl linker isomers **21** and **22** were synthesized by alkylation of 26 (R^2 = Me, R^1 = H) with R- and S-3-bromo-2-methyl-propanol to provide 27, conversion to the mesylate then (R)-2-methylpyrrolidine alkylation (Scheme 1). Synthesis of the central ring 3-pyridyl 20 was produced by ethyl 4-(6-chloropyridin-3-yl)-4-oxo-butyrate **28** and hydrazine hydrate cyclization to the 4,5-dihydro-2H-pyridazinone 29, followed by alkylation with 3-(R-2-methylpyrrolidin-1-yl)propan-1-ol using DMSO and base to directly produce aromatized target 20 (Scheme 2). The 4methyl analogue 9 was synthesized by the procedure outlined in Scheme 1, starting with 4-(4-methoxyphenyl)-3-methyl-4-oxobutyric acid.

Additional approaches to selectively modify either the 4- or 5position are shown in Schemes 3–5. The 5-methyl analogue **11** was produced using a modification of our previously described

Scheme 1. Reagents and conditions: (a) \mathbb{R}^2 NHNH₂, 2-propanol, reflux, 80–95%; (b) MnO₂, xylenes, 155 °C, SeO₂/HOAc or Cu(II)Cl₂, CH₃CN, reflux, 50–85%; (c) BBr₃, DCM, 5 °C \rightarrow rt, 70–95%; (d) K₂CO₃, Br(CH₂)₃Cl, acetone, 65 °C; (e) (*R*)-2-methylpyrrolidine, NaI, K₂CO₃, CH₃CN 80 °C, 35–60% two steps; (f) *R* or *S* 3-bromo-2-methylpropanol, K₂CO₃, CH₃CN 80 °C, 50–75%; (g) (i.) MsCl, TEA, DCM; (ii.) (*R*)-2-methylpyrolidine, NaI, K₂CO₃, CH₃CN 80 °C, 40–60% two steps.

Scheme 3. Reagents and conditions: (a) $Br(CH_2)_3Cl$, K_2CO_3 , acetone, 80 °C. 65%; (b) (i.) $HC(O)COOH \cdot H_2O$, 85 °C; (ii.) $NH_2NH_2 \cdot H_2O$, ethanol, 85 °C. two steps 35%; (c) *R*-2-methylpyrrolidine, K_2CO_3 , CH_3CN ; 67%.

Scheme 4. Reagents and conditions: (a) K_2CO_3 , $Br(CH_2)_3Cl$, acetone, 80 °C, 70%; (b) CuBr, EtOAc, CHCl₃, reflux, 70%; (c) ethyl 2-pyridylacetate, NaH, DMF, 72% \rightarrow 33; (d) (*R*)-2-methylpyrrolidine, Nal, K_2CO_3 , CH₃CN 80 °C; (e) NH₂NH₂·H₂O; ethanol, HOAc, 46%; (f) DMSO, K_2CO_3 , 80 °C, 75%.

Scheme 5. Reagents and conditions: (a) K_2CO_3 , $Br(CH_2)_3CI$, acetone, 80 °C, 89% \rightarrow 36; (b) (*R*)-2-methylpyrrolidine, NaI, K_2CO_3 , CH_3CN 80 °C, 96%; (c) LiHMDS, THF, 2-methylpyridine, 0 \rightarrow 45 °C, 70–80%; (d) NaH, BrCH₂CO₂Et, DMSO, toluene, 52%; (e) NH₂NH₂·H₂O; ethanol, 25%; (f) NaOH, water, EtOH, Na 3-nitrobenzenesulfonic acid, 35%.

Aldol/hydrazine cyclocondensation sequence to construct the pyridazinone ring^{4,6} (Scheme 3).

Chloro **30** was condensed with glyoxalic acid monohydrate in acetic acid at 135 °C, followed by hydrazine cyclocondensation of the resulting Aldol adduct to give the 4,5-dihydro-2H-pyridazin-3-one **31** in low yield. Incorporation of (*R*)-2-methylpyrrolidine gave **11**. The critical step toward the synthesis of the 4-pyridyl **10** (Scheme 4) was alkylation of 2-bromo-1-[4-(3-chloropropoxy)phenyl]ethanone **32** with ethyl 2-pyridinyl acetate to produce

Scheme 2. Reagents and conditions: (a) H₂NNH₂·H₂O, ethanol, 80 °C, 87%; (b) 1 M KtOBu, t-BuOH, 3-(R-2-methylpyrrolidin-1-yl)propan-1-ol, DMSO, 100 °C, 8%.

5495

33 (72% yield). Installation of (*R*)-2-methylpyrrolidine (**34**), hydrazine cyclization, followed by DMSO oxidation produced 10 in 30% vield. The 5-(2-pyridyl) 12 synthesis commenced with ethyl 4hydroxybenzoate 35 (Scheme 5), installation of the amine side chain ($36 \rightarrow 37$), and 2-methylpyridine addition to ketone 38, followed by subsequent alkylation with ethyl bromoacetate to produce the keto-ester intermediate 39. Hydrazine condensation and oxidation of the 4,5-dihydropyridazinone using sodium 3-nitrobenzenesulfonate produced 12.

The pyridazinone analogues were tested using in vitro binding assays by displacement of [³H]NAMH in membranes isolated from CHO cells transfected with cloned human H₃ or rat H₃ receptors as shown in Table 1 and Table 2.^{3,4} The (R)-2-methylpyrrolidine amine was previously established to be optimum⁴ and was fixed for comparison while exploring further SAR. Also previously disclosed was substitution at the N² position could accommodate significant steric bulk without affecting H₃R binding affinity, although increasing the size of the R^2 group greater than methyl (2) resulted in compounds with log P values greater than 3. This negatively affected molecular weight and decreased the ligand efficiency (LE) and the ligand lipophilic efficiency (LLE).⁷ Amphiphilic, high log P compounds have been shown to enhance hERG activity and drive high tissue distribution inducting phospholipidosis.⁸ Motivated to synthesize compounds with lower *c* log *P*, the fluorinated ethyl (**3** and 4) and polar N-ethanol 5 were designed. Similar to other simple alkyl derivatives (e.g. 2)⁴ compounds **3**, 4 and **5** also had high affinity for both human and rat H₃R. Further discovery flow profiling with these analogues however showed poor oral bioavailability in the rat (F < 10%). Lowering the $c \log P$ also was the motivation for replacement of the lipophilic R^2 phenyl **6** with more polar 2-pyridyl 7 and 2-pyrimidinyl 8 heteroaryls. The 2-Pym 8 showed balanced and slightly higher affinity compared with 7 for both human and rat H_3Rs ($hH_3RK_i = 1.4 \text{ nM}$, $rH_3RK_i = 7.9 \text{ nM}$) with lower lipophilicity (calculated $c \log P = 1.8$ by the Tripos method). Compound 8 had acceptable in vitro metabolic stability across species in liver microsomes ($t_{1/2}$ > 40 min in mouse, rat, dog, monkey and human) and IC₅₀ values > 30 μ M for inhibition of cytochrome P450 enzymes CYP1A2, 2C9, 2C19, 2D6 and 3A4, indicating minimal potential for drug-drug interactions. In a hERG patch-express assay 8 had an IC₅₀ value >10 µM. Compound 8 also showed excellent selectivity (>1000-fold) for hH₁, hH₂, and hH₄ receptor subtypes and against a panel of 70 GPCRs, ion channels and enzymes. In a rat pharmacokinetic experiment 8 showed accept-

Table 1

Pyridazin-3-one H₃R binding data^{a,b}

R [∠] 	
	Me
R^4 R^5 O	

Entry	R^2	R^4	R ⁵	$hH_3(K_i nM)$	rH3 (<i>K</i> _i nM)	c log P
1	Н	Н	Н	2.0 ± 0.4	7.2 ± 0.4	2.3
2	Me	Н	Н	1.4 ± 0.1	6.3 ± 1.1	2.8
3	CH ₂ CH ₂ F	Н	Н	3.4 ± 0.5	11 ± 0.5	2.6
4	CH ₂ CF ₃	Н	Н	5.7 ± 0.8	11 ± 0.5	2.7
5	CH ₂ CH ₂ OH	Н	Н	3.0 ± 0.1	9.5 ± 0.7	1.5
6	Ph	Н	Н	2.5 ± 0.9	7.9 ± 1.6	4.3
7	2-Pyr	Н	Н	10 ± 2	22 ± 3	2.8
8	2-Pym	Н	Н	1.4 ± 0.1	7.9 ± 0.8	1.9
9	Н	Me	Н	3.4 ± 0.1	8.7 ± 1.0	2.8
10	Н	2-Pyr	Н	3.1 ± 0.03	10 ± 1.0	3.1
11	Н	Н	Me	2.9 ± 0.1	12 ± 0.1	2.5
12	Н	Н	2-Pyr	12 ± 1	70 ± 1	2.3

K: values nM ± SEM

^b Pyr = 2-pyridine; 2-Pym = 2-pyrimidine.

Table 2

Entrv

13

14

Pyridazin-3-one central ring and linker H₃R binding data^a

		2 - N 6	$2 \xrightarrow{R^1} 3$ 4×0 5	N R ³	
R^1	R^2	Х	R ³	$hH_3(K_i, nM)$	$rH_3(K_i, nM)$
3-F 2-F	Me H	C CH	H H	5.8 ± 1.2 16 ± 2	27 ± 7 69 ± 24
3-Cl 3.5-F	Me Me	C C	Н Н	4.4 ± 0.5 11 ± 3	14 ± 2 41 ± 5

15	5-01	IVIC	C	11	-11 ± 0.5	17 ± 2	
16	3,5-F	Me	С	Н	11 ± 3	41 ± 5	
17	3,5-F	Н	С	Н	7.1 ± 1.4	40 ± 4	
18	2-OMe	Н	CH	Н	152 ± 19	229 ± 65	
19	3-CN	Н	С	Н	38 ± 12	111 ± 17	
20	Н	Н	Ν	Н	35 ± 14	70 ± 15	
21	Н	Me	CH	S-Me	2.4 ± 0.4	4.6 ± 1	
22	Н	Me	CH	R-Me	15 ± 2	52 ± 5	

^a K_i values nM ± SEM.

able i.v. intrinsic pharmacokinetic properties ($t_{\frac{1}{2}}$ = 1.5 h, CL = 29 mL/min/kg, V_d = 3.9 L/kg) and oral bioavailability (*F* = 56%). However, the brain exposure was low (brain/plasma ratio (B/ P) = 0.5) for potential CNS indications, and this compound was not further advanced. Subsequently, the 4- and 5-positions were probed with methyl and 2-Pyr substitution. Methyl substitutions (9 and 11) were equally tolerated at both positions, while the 5-Pyr 12 had 4-fold and 7-fold lower affinity for hH₃R and rH₃R, respectively, compared to the 4-Pyr 10. Compounds 10 and 12 showed acceptable in vitro metabolic stability, but did not show improvement in oral bioavailability (F < 10%) and/or brain exposure $(B/P \ll 1)$ compared to **1** or **2**.

Data in Table 2 reveals the effect of varying the substitution on the central phenyl ring. Substitution in the 3-position with fluorine (13), chlorine (15) or with 3,5-difluoro (16, and 17) were tolerated for H₂R binding affinity, while 2-substitution showed significantly reduced H₃R affinity (e.g. **14** and **18**). Replacing the central phenyl ring with 3-pyridyl **20** led to $a \ge 10$ -fold decrease in human and rat H₃R affinity. The effect of incorporating a chiral methyl group on the propyl linker was also investigated with S-21 and R-22. The S-isomer 21 retained $hH_3R(K_1 = 2.4 \text{ nM})$ and $rH_3R(K_1 = 4.6 \text{ nM})$ affinity equivalent to 2, while R-22 had 6- and 11-fold weaker affinity for hH₃R and rH₃R.

Based on target affinity and physical property data (pH2 and pH7.4 solubility >0.25 mg/mL, $c \log P = 3.3$ and 3.0) S-methyl 21 and 3-fluoro 13 were further profiled for selectivity against hH₁, hH₂, and hH₄ receptor subtypes and against a panel of 70 GPCRs, ion channels and enzymes (MDS Pharma Services, LeadProfiler). Compound 13 showed <30% inhibition against hH₁, hH₂, and hH₄ subtypes at 10 µM concentration, and inhibited only the norepinephrine transporter (NET) by greater than 70% at 10 µM concentrations in the broader screening panel. Compound 21 also showed excellent selectivity (> 1000-fold) for hH₁, hH₂, and hH₄ subtypes and displayed <30% inhibition at 10 μ M concentration in the MDS panel of 70 targets, including NET (19% inh.). Functionally, 13 and 21 showed potent antagonist activity and displayed full inverse agonist activity in the [35S]GTPγS hH₃R binding assay.3,4 3-Fluoro 13 and S-Methyl 21 decreased basal activity with EC₅₀ values of 1.3 ± 0.1 nM and 2.1 ± 0.1 nM, respectively.

Based on the target H₃R affinity, selectivity, in vitro metabolic stability in liver microsomes ($t_{\frac{1}{2}}$ > 40 min across species) and CYP inhibition selectivity (IC₅₀ > 30 μ M), **21** and **13** were further evaluated for pharmacokinetic properties in the rat (Table 3) in comparison with **2**.⁴ Compound 13 showed an i.v. $t_{\frac{1}{2}}$ of 1.2 h, clearance of 38 mL/min/kg, and oral bioavailability of 42% based on 6 h AUC data with good brain exposure (B/P = 3.4). S-Me 21 had similar oral bioavailability (%F = 37 based on 6 h AUC) with good brain exposure in the rat (B/P = 2.5) (Table 3).

The rat dipsogenia model was used in the project as an in vivo surrogate measure of H₃R functional inhibition in the brain following peripheral administration. Histamine and the H₃-selective agonist, R- α -methylhistamine (RAMH), induce water drinking in the rat when administered either peripherally or centrally, an effect that is blocked by H₃R antagonists.^{1h,9} In this model both **13** and 21 potently and dose-dependently inhibited RAMH-induced dipsogenia with ED₅₀ values of 0.13 (0.02-0.91) mg/kg i.p. and 0.02 (0.005–0.07) mg/kg i.p., respectively. Following the demonstration of potent in vivo H₃R functional activity in the brain, **13** and **21** were further evaluated for wake promoting activity in the rat.¹⁰ Histamine-producing neurons are an important part of the monoaminergic arousal system and H₂R antagonists have been documented to increase wakefulness in a number of species, although at doses and cortical H₃R occupancy levels much higher than those producing activity in the dipsogenia model or efficacy in cognition models.¹¹ Wake promoting activity was measured as previously described using male Sprague Dawley rats surgically implanted for chronic recording of EEG (electroencephalographic) and EMG (electromyographic) signals.¹² The cumulative wake time at 4 h after dosing was evaluated during the normal quiet period of the rat. Compound 21 increased waking at 3 (166±6min) and 10 mg/kg i.p. (231 ± 6 min) by 4 h AUC values (*P* < 0.001 ANOVA). At 10 mg/kg, waking was enhanced out to 5.5 h post dosing, and

Table 3Pharmacokinetic properties in rat^a

		2 ^b	13 ^b	21 ^c
i.v.	t _{1/2} /(h)	1.6 ± 0.3	1.2 ± 0.3	0.8 ± 0.2
	V _d (L/kg)	6.5 ± 2.9	4.5 ± 1.4	2.5 ± 1.0
	CL (mL/min/kg)	45 ± 11	38 ± 7	37 ± 8
p.o	AUC (ng h/mL)	538 ± 75	936 ± 166	892 ± 198
	C_{max} (ng/mL)	123 ± 6	284 ± 34	146 ± 9
	$t_{1/2}/(h)$	2.3	1.6	4.3
	F (%)	28 ± 4	42 ± 7	38 ± 8
	B/P^d	3.5 ± 0.4	3.4 ± 0.3	2.5 ± 0.1

^a Administration at 1 mg/mg i.v. and 5 mg/kg p.o.; data calculated from 6 h AUC values.

^b i.v. formulation (3% DMSO, 30% solutol, 67% phosphate buffered saline) oral formulation (saline).

^c i.v. formulation (3% DMSO, 30% solutol, 67% phosphate buffered saline) oral formulation (50% Tween 80, 40% propylene carbonate and 10% propylene glycol).

^d B/P = brain to plasma ratio.

Figure 2. Compound **21**-induced wake promotion; administered i.p. to male rats chronically implanted with electrodes for recording EEG and EMG activity. Cumulative wake 4 h AUC values shown for each dose (mean + SEM, n = 7-8/ group). *p < 0.05 Dunnett's post hoc versus vehicle.

Figure 3. Compound **13**-induced wake promotion; administered i.p. to male rats chronically implanted with electrodes for recording EEG and EMG activity. Cumulative wake 4 h AUC values shown for each dose (mean + SEM, n = 7-8/ group). *p < 0.05, Dunnett's post hoc versus vehicle.

maximal cumulative wake surplus was 196 min reached at 7 h. EEG activity, behavior and body temperature were all normal at the 3 or 10 mg/kg doses. At 10 mg/kg, **21** demonstrated robust wake promotion, with the treated animals being awake 96% of the time up to 4 h post dose and averaging a 62% increase in wake time over the vehicle treated animals (Fig. 2). Compound **13** increased wake activity in a dose-related manner at **10** (157 ± 9 min) and 30 mg/kg (184 ± 15 min) by 4 h AUC values (P < 0.001 ANOVA) (Fig. 3). Compound **13** showed less robust wake activity compared to **21**, consistent with weaker potency in the dipsogenia model.

In summary, H_3R structure-activity relationships were disclosed on the pyridazin-3-one phenoxypropyl amine core leading to the identification of new molecules displaying excellent H_3R target potency, selectivity and rat pharmacokinetic properties. Compounds **13** and **21** were profiled in greater detail and advanced into in vivo evaluations. Both compounds displayed potent H_3R antagonist activity in the brain using the rat dipsogenia model as a functional H_3R readout and demonstrated potent wake-promoting activity in the rat EEG/EMG model.

References and notes

- 1. For reviews see: (a) Berlin, M.; Boyce, C. W.; de Lera Ruiz, M. J. Med. Chem. 2011, 54, 26; (b) Brown, R. E.; Stevens, D. R.; Haas, H. L. Prog. Neurobiol. 2001, 63, 637; (c) Leurs, R.; Bakker, R. A.; Timmerman, H.; de Esch, I. J. Nat. Rev. Drug Discovery 2005, 4, 107; (d) Wijtmans, M.; Leurs, R.; de Esch, I. Expert Opin. Investig. Drugs 2007, 16, 967; (e) Esbenshade, T. A.; Fox, G. B.; Cowart, M. D. Mol. Interv. 2006, 6. 77: (f) Esbenshade, T. A.; Browman, K. E.; Bitner, R. S.; Strakhova, M.; Cowart, M. D.; Brioni, J. D. Br. J. Pharmacol. 2008, 154, 1166; (g) Hudkins, R. L.; Raddatz, R. Ann. Rep. Med. Chem. 2007, 42, 49; (h) Raddatz, R.; Tao, M.; Hudkins, R. L. Curr. Top. Med. Chem. 2010, 10, 153; (i) Brioni, J. D.; Esbenshade, T. A.; Garrison, T. R.; Bitner, S. R.; Cowart, M. D. J. Pharmacol. Exp. Ther. 2011, 336, 38; (j) Medhurst, A. D.; Atkins, A. R.; Beresford, I. J.; Brackenborough, K.; Briggs, M. A.; Calver, A. R.; Cilia, J.; Cluderay, J. E.; Crook, B.; Davis, J. B.; Davis, R. K.; Davis, R. P.; Dawson, L. A.; Foley, A. G.; Gartlon, J.; Gonzalez, M. I.; Heslop, T.; Hirst, W. D.; Jennings, C.; Jones, D. N.; Lacroix, L. P.; Martyn, A.; Ociepka, S.; Ray, A.; Regan, C. M.; Roberts, J. C.; Schogger, J.; Southam, E.; Stean, T. O.; Trail, B. K.; Upton, N.; Wadsworth, G.; Wald, J. A.; White, T.; Witherington, J.; Woolley, M. L.; Worby, A.; Wilson, D. M. J.Pharmacol. Exp. Ther. 2007, 321, 1032; (k) Nagase, T.; Mizutani, T.; Ishikawa, S.; Sekino, E.; Sasaki, T.; Fujimura, T.; Ito, S.; Mitobe, Y.; Miyamoto, Y.; Yoshimoto, R.; Tanaka, T.; Ishihara, A.; Takenaga, N.; Tokita, S.; Fukami, T.; Sato, N. J. Med. Chem. **2008**, *51*, 4780; (1) Thompson Reuters Integrity, Bavisant, entry 470497, 2011.; (m) Thompson Reuters Integrity, MK-0249, entry 433171, 2011.
- (a) Leurs, R.; Chazot, P. L.; Shenton, F. C.; Lim, H. D.; de Esch, I. J. Br. J. Pharmacol. 2009, 157, 14;
 (b) Zampeli, E.; Tiligada, E. Br. J. Pharmacol. 2009, 157, 24;
 (c) Bhatt, H. G.; Agrawal, Y. K.; Raval, H. G.; Manna, K.; Desai, P. R. Mini Rev. Med. Chem. 2010, 10, 1293.
- Bacon, E. R.; Bailey, T. R.; Becknell, N. C.; Chatterjee, S.; Dunn, D.; Hostetler, G. A.; Hudkins, R. L.; Josef, K. A.; Knutsen, L.; Tao, M.; Zulli, A. L.; US2010273779, 2010.
- Hudkins, R. L.; Raddatz, R.; Tao, M.; Mathiasen, J. R.; Aimone, L. D.; Becknell, N. C.; Prouty, C. P.; Knutsen, L.; Yazdanian, M.; Moachon, G.; Ator, M. A.; Mallamo, J. P.; Marino, M. J.; Bacon, E. R.; Williams, M. J. Med. Chem. 2011, 54, 4781.
- (a) Curran, W. V.; Ross, A. J. Med. Chem. 1974, 17, 273; (b) Sotelo, E.; Ravina, E. Syn. Comm. 2000, 30, 1.
- (a) Wermuth, C. G.; Schlewer, G.; Bourguignon, J. J.; Maghioros, G.; Bouchet, M. J.; Moire, C.; Kan, J. P.; Worms, P.; Biziere, K. J. Med. Chem. **1989**, 32, 528; (b) Coates, W. J.; McKillop, A. Synthesis **1993**, 334.

- (a) Hopkins, A. L.; Groom, C. R.; Alex, A. Drug Discovery Today 2004, 9, 430;
 (b) Lesson, P. D.; Springthorpe, B. Nat. Rev. Drug Discovery 2007, 6, 881; (c) Perola, E. J. Med. Chem. 2010, 53, 2986.
- (a) Ploemen, J. P.; Kelder, J.; Hafmans, T.; van de Sandt, H.; van Burgsteden, J. A.;
 Saleminki, P. J.; van Esch, E. *Exp. Toxicol. Pathol.* **2004**, *55*, 347; (b) Reasor, M. J.;
 Hastings, K. L.; Ulrich, R. G. *Expert Opin. Drug Saf.* **2006**, *5*, 567. 8.
- Clapham, J.; Kilpatrick, G. J. Eur. J. Pharmacol. 1993, 232, 99.
 Lin, J. S.; Sergeeva, O. A.; Haas, H. L. J. Pharmacol. Exp. Ther. 2011, 336, 17.
 Le, S.; Gruner, J. A.; Mathiasen, J. R.; Marino, M. J.; Schaffhauser, H. J. Pharmacol.
- Exp. Ther. 2008, 325, 902.
 12. (a) Edgar, D. M.; Seidel, W. F. J. Pharmacol. Exp. Ther. 1997, 283, 757; (b) Opp, M. R.; Krueger, J. M. Brain Res. 1994, 639, 57.