November 1980 Communications 875

Synthesis of Some Substituted 6-Oxo-6,7-dihydro-4*H*-pyrazolo[5,1-*c*][1,4]oxazines from 3-Oxo-2,3-dihydrofurans

Suzanne Gelin, Michel Chabannet

Laboratoire de Chimie Organique, Institut National des Sciences Appliquées, F-69621 Villeurbanne Cedex, France

We have previously^{1,2} described a simple preparation of 3(or 5)-(1-hydroxyalkyl)-pyrazole derivatives from 3-oxo-2,3-dihydrofurans 1. We now report the application of this approach to the synthesis of some pyrazolo[5,1-c][1,4]oxazines 5, a class of compound of which very few examples have been reported in the chemical literature^{3,4}.

Treatment of 3-oxo-2,3-dihydrofurans 1 with ethyl hydrazinoacetate (2) affords the *N*-ethoxycarbonylmethylpyrazole derivatives 3 in good yields. In all cases the condensation takes the indicated course, there being no evidence for the formation of an isomeric *N*-alkylpyrazole.

1-Aminocarbonylmethyl compounds 4 are produced in quantitative yield by the action of aqueous ammonia. On heating, compounds 3 (path a) or compounds 4 (path b) at 200 °C, ring closure occurs to afford the 6-oxo-6,7-dihydro-4H-pyrazolo[5,1-c][1,4]oxazines 5. However, better yields are obtained from compounds 4 (Table).

The structure of compounds 3 and 5 were confirmed by I.R., U.V., and ¹H-N.M.R. spectral data.

0039-7881/80/1132-0875 \$ 03.00

 ${\hbox{\fontfamily{\fontfamily{line} \cite{1.5}}}}$ 1980 Georg Thieme Verlag \cdot Stuttgart \cdot New York

4-Ethoxycarbonyl-1-ethoxycarbonylmethyl-5-(1-hydroxyalkyl)-3-methyl(or -phenyl)-pyrazoles 3; General Procedure:

To a stirred suspension of ethyl hydrazinoacetate hydrochloride (2; 3.1 g, 0.02 mol) in ethanol (20 ml) is added a 2 molar solution of sodium ethoxide in ethanol (10 ml) and then, in one portion, the di-

hydrofuran 1¹ (0.02 mol) in ethanol (20 ml). The mixture is heated under reflux for 2 h. After cooling to room temperature, the precipitated sodium chloride is filtered off. Evaporation of the filtrate in vacuo furnishes the almost pure compounds 3; yields: 3a, 5.4 g; 3b. 5.6 g; 3c, 6.6 g; 3d, 6.8 g. Analytical samples are obtained by chro-

Table. Compounds 3 and 5 prepared

Com- pound	R¹	\mathbb{R}^2	Yield ^a [%]	m.p. [°C] (solvent)	Molecular Formula ^b	'H-N.M.R. (CDCl ₃ /TMS) δ [ppm]	L.R. (CHCl ₃) ν [cm ⁻¹]	U.V. (ethanol) λ_{\max} (nm) (ε)
3a	CH ₃	н	76	66° (c-C ₆ H ₁₂)	C ₁₂ H ₁₈ N ₂ O ₅ (270.3)	1.30 (t, 3 H, J=7 Hz); 1.40 (t, 3 H, J=7 Hz); 2.45 (s, 3 H); 4.07 (s, 1 H, exchangeable); 4.34 (q, 2 H, J=7 Hz); 4.42 (q, 2 H, J=7 Hz); 4.92 (s, 2 H); 5.08 (s, 2 H)	3400-2980; 1750-1680	236 (9250)
3b	CH ₃	CH ₃	78	oil	$C_{13}H_{20}N_2O_5$ (284.3)	1.31 (t, 3 H, J =7 Hz); 1.41 (t, 3 H, J =7 Hz); 1.57 (d, 3 H, J =7 Hz); 2.46 (s, 3 H); 4.35 (q, 2 H, J =7 Hz); 4.48 (q, 2 H, J =7 Hz); 4.17-4.65 (1 H, masked, exchangeable); 5.08 (s, 2 H); 5.26 (q, 1 H, J =7 Hz)	3400-2980; 1750-1680	235 (7650)
3e	C ₆ H ₅	Н	90	75° (c-C ₆ H ₁₂)	$C_{17}H_{20}N_2O_5$ (332.4)	1.12 (t, 3 H. <i>J</i> =7 Hz); 1.25 (t, 3 H, <i>J</i> =7 Hz); 4.30 (q, 2 H, <i>J</i> =7 Hz); 4.32 (q, 2 H, <i>J</i> =7 Hz); 4.96 (s, 2 H); 5.18 (s, 2 H); 7.5–7.7 (m, 3 H); 7.7–7.9 (m, 2 H)	3400–2980; 1750–1680	234 (11600)
3d	C ₆ H ₅	CH ₃	92	oil	C ₁₈ H ₂₂ N ₂ O ₅ (346.4)	1.11 (t, 3 H, J =7 Hz); 1.30 (t, 3 H, J =7 Hz); 1.61 (d, 3 H, J =7 Hz); 4.30 (q, 2 H, J =7 Hz); 4.36 (q, 2 H, J =7 Hz); 5.26 (s, 2 H); 5.46 (q, 1 H, J =7 Hz); 7.5-7.9 (m, 5 H)	3380–2980; 1760–1730; 1700	228 (10300)
5a	CH ₃	Н	b: 89 a: 40	109° (7:3 C ₆ H ₁₄ / C ₂ H ₅ OAc)	$C_{10}H_{12}N_2O_4$ (224.2)	1.40 (t, 3 H, J = 7 Hz); 2.52 (s, 3 H); 4.44 (q, 2 H, J = 7 Hz); 5.05 (s, 2 H); 5.85 (s, 2 H)	3420; 2980; 1765; 1715; 1690	237 (7700)
5b	CH ₃	СН3	b: 84 a: 43	90° (7:3 C_6H_{14}/C_2H_5OAc)	$C_{11}H_{14}N_2O_4$ (238.2)	1.40 (t. 3 H, $J=7$ Hz); 1.75 (d, 3 H, $J=7$ Hz); 2.50 (s, 3 H); 4.41 (q, 2 H, $J=7$ Hz); 4.75 and 4.97 (2 H, 2 d, $J_{AB}=18.5$ Hz); 6.25 (q, 1 H, $J=7$ Hz)	3360; 2980; 1760; 1720; 1700	233 (7800)
5c	C ₆ H ₅	Н	b: 84 a: 40	104° (1:1 C ₆ H ₁₄ / C ₂ H ₅ OAc)	$C_{15}H_{14}N_2O_4$ (286.3)	1.26 (t, 3 H, <i>J</i> = 7 Hz); 4.22 (q, 2 H, <i>J</i> = 7 Hz); 4.98 (s, 2 H); 5.72 (s, 2 H); 7.3–7.5 (m, 3 H); 7.6–7.7 (m, 2 H)	3500; 2980; 1770; 1730; 1695	238 (10 000); 212 (6900)
5d	C ₆ H ₅	CH ₃	b: 79 a: 27	107° (4:1 C ₆ H ₁₄ / C ₂ H ₅ OAc)	C ₁₆ H ₁₆ N ₂ O ₄ (300.3)	1.27 (t, 3 H, J =7 Hz); 1.82 (d, 3 H, J =7 Hz); 4.37 (q, 2 H, J =7 Hz); 4.89 and 5.13 (2 H, 2 d, J _{AB} =19 Hz); 6.34 (q, 1 H, J =7 Hz); 7.5–7.7 (m, 3 H); 7.8–8.0 (m, 2 H)	3400; 2980; 1765; 1730; 1700	234 (9200); 212 (6800)

^a Yields of purified products, yield of 5 based on 3.

^b All products gave satisfactory microanalyses (C ± 0.24 , H ± 0.42 , N ± 0.43).

November 1980 Communications 877

matographing 1.5 g portions of these materials [silica gel 30 g, column: $18 \text{ mm} \times 30 \text{ cm}$; eluent, ether], the product being obtained in the fraction 50 to 110 ml (Table).

1-Aminocarbonylmethylpyrazoles 4; General Procedure:

A mixture of the 1-ethoxycarbonylmethylpyrazole 3 (0.01 mol) and 28% aqueous ammonium hydroxide (10 ml, 0.29 mol) is heated under reflux for 2 h. Elimination of the excess of ammonium hydroxide under reduced pressure, affords either a solid (4a-c) or an oil (4d), yield: quantitative; pratically pure material, as evidenced by ¹H-N.M.R., which is not purified further; m.p. (solvent): 4a, 130 °C (ethanol); 4b, 95 °C (ethanol/ethyl acetate 3:7); 4c, 138 °C (ethanol); 4d, viscous oil.

6-Oxo-6,7-dihydro-4H-pyrazolo[5,1-c][1,4]oxazines 5; General Procedure:

Compounds 3 (path a) or compounds 4 (path b) are heated on an oil bath at $180-200\,^{\circ}$ C. After the evolution of gas has ceased (10 to 15 min), the residue is cooled to room temperature. Compounds 5 are separated by yacuum sublimation at $140\,^{\circ}$ C/20 torr (Table).

Received: June 19, 1980

0039-7881/80/1132-0877 \$ 03.00

© 1980 Georg Thieme Verlag - Stuttgart - New York

¹ S. Gelin, M. Chabannet, Synthesis 1978, 448.

² S. Gelin, C. Deshayes, M. Chabannet, J. Heterocycl. Chem. 16, 1117 (1979).

³ E. E. Schweizer, S. Evans, J. Org. Chem. 43, 4328 (1978).

⁴ W. Sucrow, C. Mentzel, M. Slopianka, Chem. Ber. 107, 1322 (1974).