Iridium-Catalyzed Carbonyl Allylations by Allylic Alcohols with Tin(II) Chloride

Yoshiro Masuyama,* Toshiya Chiyo, Yasuhiko Kurusu

Department of Chemistry, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan Fax +81(3)32383361; E-mail: y-masuya@sophia.ac.jp

Received 21 June 2005

Abstract: Iridium complex $[IrCl(cod)]_2$ can function as a catalyst for the allylation of aldehydes and ketones by allylic alcohols upon addition of an equimolar amount of $SnCl_2$ in THF–H₂O; the reaction is carried out between room temperature and 50 °C to give the corresponding homoallylic alcohols.

Key words: nucleophilic addition, carbonyl allylation, π -allyliridium, tin(II) chloride, allylic alcohols

Complexes of group IX elements, such as [RhCl(cod)]₂, can catalyze the carbonyl allylation by allylic alcohols with SnCl₂ in THF-H₂O at 50 °C,¹ similarly to palladiumcatalyzed carbonyl allylations.² A disadvantage of the palladium(0) cycle is that two equivalents of SnCl₂ are required for each equivalent of allylic alcohol.³⁻⁵ In contrast, the reaction with rhodium(I) has been accomplished with one equivalent of SnCl₂. Here SnCl₂ acts as a reducing agent to accomplish the umpolung of the usual electrophilic π -allylrhodium(III) complex. It has been reported that π -allyliridium(III) complexes of other group IX elements can be prepared from iridium(I) complexes, such as [IrCl(cod)]₂ and allylic esters and can be used for reactions with nucleophiles.⁶ Thus, we hoped that [IrCl(cod)]₂ would be active as a catalyst for carbonyl allylation by allylic alcohols with SnCl₂.

The catalytic activity of [IrCl(cod)]₂ with some ligands, along with varying the stoichiometry of SnCl₂, were investigated for the allylation of benzaldehyde with 2-propenol (1) in THF-H₂O at room temperature under a nitrogen atmosphere (Table 1). No allylation occurs without the addition of either the iridium catalyst or SnCl₂. The optimum reaction conditions employed equimolar amounts of 1 and SnCl₂ in THF (2 mL) and H₂O (0.1 mL) (Table 1, entry 7);⁷ under these conditions the homoallylic alcohol was isolated after 20 hours in 87% yield. The allylation proceeded without H₂O, however, after a reaction time of 43 hours a low yield of homoallylic alcohol resulted (Table 1, entry 5). We also studied the effect of adding a ligand (entries 8–11); although the yields were lower, the character of the ligand did not have a significant effect. Under optimum conditions (Table 1, entry 7) [IrCl(cod)]₂ exhibited higher catalytic activity than either IrCl(CO)(PPh₃)₂ (89 h, 88%) or IrCl₃ (7 d, 0%). We also

SYNLETT 2005, No. 14, pp 2251–2253

Advanced online publication: 29.07.2005 DOI: 10.1055/s-2005-872255; Art ID: U19005ST

© Georg Thieme Verlag Stuttgart · New York

tested a number of tin(II) halides, however, lower yields resulted with SnF_2 (68 h, 12%) and $SnBr_2$ (67 h, 13%), while no reaction occurred even after 47 hours with SnI_2 . As a solvent, THF was found to be superior to other solvents such as acetonitrile (44 h, 69%) and DMF (20 h, 79%).

 Table 1
 Allylation of Benzaldehyde with 2-Propenol (1)^a

1	.0H + Ph(] оно г	$\frac{\text{IrCl(cod)]}_2}{\text{SnCl}_2}$ $\overline{\text{FHF}-H_2O}$ r.t.		OH Ph
Entry	1 (mmol)	SnCl ₂ (mmol)	Ligand ^b	Time (h)	Yield (%) ^c
1	1.0	1.0	_	69	57
2	1.0	1.5	_	45	68
3	1.0	2.0	_	42	71
4	1.5	1.0	_	45	61
5	1.5	1.5	_	43	81 (13) ^d
6	1.5	2.0	_	44	84
7 ^e	1.5	1.5	_	20	87
8 ^e	1.5	1.5	PPh ₃	20	58
9 ^e	1.5	1.5	dppe	22	79
10 ^e	1.5	1.5	dppb	22	76
11 ^e	1.5	1.5	$P(C_6F_5)_3$	22	70

 a The allylation of benzaldehyde (1.0 mmol) was carried out with [IrCl(cod)]_2 (0.02 mmol) in THF (3 mL) and H_2O (0.1 mL).

^b Based on phosphorus (4 mol%).

^c Isolated yields.⁸

^d The figure in parentheses is the yield without H_2O .

 e The reaction was carried out in THF (2 mL) and $H_{2}O$ (0.1 mL).

Having optimized the reaction conditions, we subjected a range of aldehydes to the allylation (Table 2). Aromatic aldehydes bearing an electron-withdrawing or electron-donating group (Table 2, entries 1 and 2), an α , β -unsaturated aldehyde (Table 2, entry 3), and aliphatic aldehydes (Table 2, entries 4–7) were employed. This iridium catalytic system can also be utilized for the allylation of ketones with **1** (2.0 mmol) and SnCl₂ (2.0 mmol) at 50 °C, this is in contrast to the poor applicability of the rhodium catalytic system to ketones (Table 2, entries 8–11).¹

Table 2 Iridium-Catalyzed Carbonyl Allylation with 1

	$\sim OH + R^1 R^2$	[IrCl(cod SnCl ₂]]2	OH
× ~ 1	0	THF–H ₂ r.t.	0	√ \^R ² R ¹ 2
Entry	\mathbf{R}^1	\mathbb{R}^2	Time (h)	2 ; Yield (%) ^a
1	$4-C1C_6H_4$	Н	17	91
2	$4-CH_3C_6H_4$	Н	24	80
3	PhCH=CH	Н	44	65
4	PhCH ₂ CH ₂	Н	48	67
5	CH ₂ =CH(CH ₂) ₈	Н	47	53
6	C ₆ H ₁₃	Н	45	61
7	$c-C_{6}H_{11}$	Н	45	55
8	Ph	CH_3	89	46
9 ^b	C ₆ H ₁₃	CH ₃	49	48
10 ^b	-(CH ₂) ₄ -		44	41
11 ^b	-(CH ₂) ₅ -		46	59

^a Isolated yields.⁸

^b The reaction was carried out at 50 °C.

Regio- and diastereoselectivity were investigated for the iridium-catalyzed carbonyl allylation with 3-buten-2-ol (3) and 2-buten-1-ol (4). The allylation of benzaldehyde with **3** under optimum conditions for **1** was quite slow [5 (R = Ph), 93 h, 62%; 5a/5b, 1:99; 5b-syn/5b-anti, 20:80]. In addition, the reaction of 4 at room temperature is not practical [5 (R = Ph), 47 h, 8%, 5a/5b, 15:85, 5b-syn/5banti, 39:61]. The allylation of various aldehydes with 3 and 4 at 50 °C occurred at the allylic position substituted by a methyl group except for cyclohexanecarboxaldehyde,⁹ while *anti*-diastereoselectivities were lower than that of benzaldehyde at room temperature (Table 3).

A study of the reaction of 1 (1.0 mmol) with $SnCl_2$ (1.2) mmol) in the presence of a catalytic amount of $[IrCl(cod)]_2$ (2 mol%) in THF- d_8 (0.75 mL) at room temperature without aldehyde or H₂O in a sealed tube by NMR spectroscopy (JEOL Λ -500) was undertaken. In contrast to both the preparation of the 2-propenyltin species in the palladium-catalyzed reaction³ and the preparation of propene in the rhodium-catalyzed reaction,¹ diallyl ether was found to form.¹⁰ A plausible mechanism for the iridium-catalyzed carbonyl allylation is illustrated in Scheme 1, based on both the γ -regioselectivity which was observed with both 3 and 4 and the NMR spectroscopic studies. The detection of diallyl ether suggests the formation of a π -allyliridium complex A; the π -allyliridium complex A, derived from 1 and $[IrCl(cod)]_2$ with SnCl₂, can undergo further nucleophilic attack by $1.^6$ The γ -regioselectivity using both 3 and 4 suggests the formation of a σ -allyliridium complex **B**; the preparation of **5b** from ei-

Table 3 Iridium-Catalyzed Carbonyl Allylation with 3 or 4							
R ¹	Harris Ha	$(cod)]_2$ nCl_2 CHO $F-H_2O$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	OH R	+ OH R		
3 : $R^1 = H, R^2 = Me$ 4 : $R^1 = Me, R^2 = H$		0°C_	5a		5b		
Entry	R	3 or 4	Time (h)	Yield (%) ^a	5a/5b (5b ; <i>syn/anti</i>) ^b		
1	Ph	3	47	74	7:93 (41:59)		
2	$4-ClC_6H_4$	3	45	78	5:95 (30:70)		
3	$4\text{-}CH_3C_6H_4$	3	48	72	2:98 (40:60)		
4	PhCH ₂ CH ₂	3	48	59	2:98 (49:51)		
5	C ₆ H ₁₃	3	66	41	9:91 (40:60)		
6	$c - C_6 H_{11}$	3	74	49	67:33 (39:61)		
7	Ph	4	49	70	8:92 (46:54)		
8	$4-ClC_6H_4$	4	45	80	5:95 (43:57)		
9	$4\text{-}CH_3C_6H_4$	4	49	72	8:92 (46:54)		
10	PhCH ₂ CH ₂	4	47	62	1:99 (45:55)		

^a Isolated yields.⁸

 $C_{6}H_{13}$

 $c - C_6 H_{11}$

Ent

10

11

12

^b The ratios were determined by ¹H NMR spectroscopy.

4

4

ther 3 or 4 can be demonstrated by: (1) the transformation of an initial syn, anti-mixed 1-methyl-n-allyliridium complex derived from 3 or 4 into a mixture of (E)- and (Z)-2butenyliridium complex C accompanied by the coordination of aldehydes; and then (2) the nucleophilic addition of the 2-butenyl moiety at the γ -position (Scheme 2).

68

69

46

50

8:92

(44:56)

36:64

(37:63)

In conclusion, $[IrCl(cod)]_2$ is superior to $[RhCl(cod)]_2$ as a catalyst for carbonyl allylation, because not only aldehydes but also ketones can be applied to the iridium-catalyzed allylation with 1. The π -allyliridium complex A, derived from 1 with SnCl₂ and the iridium catalyst, should be an amphoteric allylating agent that can function either as an electrophile in the absence of an aldehyde or as a nucleophile in the presence of an aldehyde, unlike either palladium³ or rhodium catalysts.¹

Scheme 1

Scheme 2

References

- Masuyama, Y.; Kaneko, Y.; Kurusu, Y. *Tetrahedron Lett.* 2004, 45, 8969.
- (2) For reviews containing carbonyl allylations by allylic alcohols via umpolung of π-allylpalladium, see:
 (a) Masuyama, Y. J. Synth. Org. Chem., Jpn. 1992, 50, 202.
 (b) Masuyama, Y. In Advances in Metal-Organic Chemistry, Vol. 3; Liebeskind, L. S., Ed.; JAI Press: Greenwich CT, 1994, 255–303. (c) Tamaru, Y. In Perspectives in Organopalladium Chemistry for the XXI Century; Tsuji, J., Ed.; Elsevier Science: Switzerland, 1999, 215–231.
 (d) Tamaru, Y. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley: New York, 2002, 1917–1953.
- (3) For the palladium-catalyzed carbonyl allylation by allylic alcohols with SnCl₂, see: Takahara, J. P.; Masuyama, Y.; Kurusu, Y. *J. Am. Chem. Soc.* **1992**, *114*, 2577.

- (4) Palladium-catalyzed carbonyl allylations need over two equivalents of reducing agent for one equivalent of allylic alcohol and/or aldehyde: (a) For triethylborane, see: Kimura, M.; Tomizawa, T.; Horino, Y.; Tanaka, S.; Tamaru, Y. *Tetrahedron Lett.* 2000, *41*, 3627. (b) For indium iodide, see: Araki, S.; Kamei, T.; Hirashita, T.; Yamamura, H.; Kawai, M. Org. Lett. 2000, 2, 847. (c) For diethylzinc, see: Kimura, M.; Shimizu, M.; Tanaka, S.; Tamaru, Y. *Tetrahedron* 2005, *61*, 3709.
- (5) For nickel-catalyzed carbonyl allylation with over two equivalents of indium iodide and one equivalent of aldehyde, see: Hirashita, T.; Kambe, S.; Tsuji, H.; Omori, H.; Araki, S. J. Org. Chem. 2004, 69, 5054.
- (6) Takeuchi, R. *Synlett* **2002**, 1954; and references cited therein.
- (7) A typical procedure is as follows: To a solution of 1 (0.087 g, 1.5 mmol), benzaldehyde (0.11 g, 1.0 mmol), and SnCl₂ (0.28 g, 1.5 mmol) in THF (2 mL) and H₂O (0.1 mL) was added [IrCl(cod)]₂ (0.013 g, 0.02 mmol), and the solution was stirred at r.t. for 20 h. The solution was diluted with Et₂O-CH₂Cl₂ (2:1; 120 mL), washed with aq 10% HCl solution (20 mL), aq NaHCO₃ solution (20 mL), H₂O (20 mL), and brine (20 mL). The extracts were dried over anhyd MgSO₄. After evaporation of the solvent, column chromatography (silica gel; hexane–EtOAc, 7:1), and then HPLC (Japan Analytical Industry Co. Ltd., LC-908, JAIGEL-2H; CHCl₃) afforded 0.13 g (87%) of 1-phenyl-3-buten-1-ol as a colorless oil.
- (8) The structures and/or ratios were confirmed by comparison of the IR and ¹H NMR spectra with those of authentic samples, see: (a) ref. 3 (b) Ito, A.; Kishida, M.; Kurusu, Y.; Masuyama, Y. J. Org. Chem. 2000, 65, 494.
- (9) Since the reactivity of cyclohexanecarboxaldehyde is low, initially produced **5b** may react with excess cyclohexanecarboxaldehyde and isomerize to sterically unhindered and thermodynamically stable **5a** via a homoallyloxycarbenium ion intermediate: (a) Nokami, J.; Ohga, M.; Nakamoto, H.; Matsubara, T.; Hussain, I.; Kataoka, K. J. Am. Chem. Soc. **2001**, *123*, 9168. (b) Ref. 1.
- (10) ¹H NMR (500 MHz): δ = 3.93 (d, *J* = 6 Hz, 2 H), 5.09 (d, *J* = 10 Hz, 1 H), 5.23 (d, *J* = 17 Hz, 1 H), 5.83–5.91 (m, 1 H); ¹³C NMR (125 MHz): δ = 71.5, 116.0, 136.1.