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Abstract: Iridium complex [IrCl(cod)]2 can function as a catalyst
for the allylation of aldehydes and ketones by allylic alcohols upon
addition of an equimolar amount of SnCl2 in THF–H2O; the reaction
is carried out between room temperature and 50 °C to give the cor-
responding homoallylic alcohols.

Key words: nucleophilic addition, carbonyl allylation, p-allyliridi-
um, tin(II) chloride, allylic alcohols

Complexes of group IX elements, such as [RhCl(cod)]2,
can catalyze the carbonyl allylation by allylic alcohols
with SnCl2 in THF–H2O at 50 °C,1 similarly to palladium-
catalyzed carbonyl allylations.2 A disadvantage of the pal-
ladium(0) cycle is that two equivalents of SnCl2 are re-
quired for each equivalent of allylic alcohol.3–5 In
contrast, the reaction with rhodium(I) has been accom-
plished with one equivalent of SnCl2. Here SnCl2 acts as a
reducing agent to accomplish the umpolung of the usual
electrophilic p-allylrhodium(III) complex. It has been
reported that p-allyliridium(III) complexes of other group
IX elements can be prepared from iridium(I) complexes,
such as [IrCl(cod)]2 and allylic esters and can be used
for reactions with nucleophiles.6 Thus, we hoped that
[IrCl(cod)]2 would be active as a catalyst for carbonyl
allylation by allylic alcohols with SnCl2.

The catalytic activity of [IrCl(cod)]2 with some ligands,
along with varying the stoichiometry of SnCl2, were in-
vestigated for the allylation of benzaldehyde with 2-pro-
penol (1) in THF–H2O at room temperature under a
nitrogen atmosphere (Table 1). No allylation occurs with-
out the addition of either the iridium catalyst or SnCl2. The
optimum reaction conditions employed equimolar
amounts of 1 and SnCl2 in THF (2 mL) and H2O (0.1 mL)
(Table 1, entry 7);7 under these conditions the homoallylic
alcohol was isolated after 20 hours in 87% yield. The al-
lylation proceeded without H2O, however, after a reaction
time of 43 hours a low yield of homoallylic alcohol result-
ed (Table 1, entry 5). We also studied the effect of adding
a ligand (entries 8–11); although the yields were lower,
the character of the ligand did not have a significant ef-
fect. Under optimum conditions (Table 1, entry 7)
[IrCl(cod)]2 exhibited higher catalytic activity than either
IrCl(CO)(PPh3)2 (89 h, 88%) or IrCl3 (7 d, 0%). We also

tested a number of tin(II) halides, however, lower yields
resulted with SnF2 (68 h, 12%) and SnBr2 (67 h, 13%),
while no reaction occurred even after 47 hours with SnI2.
As a solvent, THF was found to be superior to other sol-
vents such as acetonitrile (44 h, 69%) and DMF (20 h,
79%). 

Having optimized the reaction conditions, we subjected a
range of aldehydes to the allylation (Table 2). Aromatic
aldehydes bearing an electron-withdrawing or electron-
donating group (Table 2, entries 1 and 2), an a,b-unsatur-
ated aldehyde (Table 2, entry 3), and aliphatic aldehydes
(Table 2, entries 4–7) were employed. This iridium cata-
lytic system can also be utilized for the allylation of ke-
tones with 1 (2.0 mmol) and SnCl2 (2.0 mmol) at 50 °C,
this is in contrast to the poor applicability of the rhodium
catalytic system to ketones (Table 2, entries 8–11).1

Table 1 Allylation of Benzaldehyde with 2-Propenol (1)a 

Entry 1
(mmol)

SnCl2
(mmol)

Ligandb Time
(h)

Yield
(%)c

1 1.0 1.0 – 69 57

2 1.0 1.5 – 45 68

3 1.0 2.0 – 42 71

4 1.5 1.0 – 45 61

5 1.5 1.5 – 43 81 (13)d

6 1.5 2.0 – 44 84

7e 1.5 1.5 – 20 87

8e 1.5 1.5 PPh3 20 58

9e 1.5 1.5 dppe 22 79

10e 1.5 1.5 dppb 22 76

11e 1.5 1.5 P(C6F5)3 22 70

a The allylation of benzaldehyde (1.0 mmol) was carried out with 
[IrCl(cod)]2 (0.02 mmol) in THF (3 mL) and H2O (0.1 mL).
b Based on phosphorus (4 mol%).
c Isolated yields.8 
d The figure in parentheses is the yield without H2O.
e The reaction was carried out in THF (2 mL) and H2O (0.1 mL).
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Regio- and diastereoselectivity were investigated for the
iridium-catalyzed carbonyl allylation with 3-buten-2-ol
(3) and 2-buten-1-ol (4). The allylation of benzaldehyde
with 3 under optimum conditions for 1 was quite slow [5
(R = Ph), 93 h, 62%; 5a/5b, 1:99; 5b-syn/5b-anti, 20:80].
In addition, the reaction of 4 at room temperature is not
practical [5 (R = Ph), 47 h, 8%, 5a/5b, 15:85, 5b-syn/5b-
anti, 39:61]. The allylation of various aldehydes with 3
and 4 at 50 °C occurred at the allylic position substituted
by a methyl group except for cyclohexanecarboxalde-
hyde,9 while anti-diastereoselectivities were lower than
that of benzaldehyde at room temperature (Table 3). 

A study of the reaction of 1 (1.0 mmol) with SnCl2 (1.2
mmol) in the presence of a catalytic amount of
[IrCl(cod)]2 (2 mol%) in THF-d8 (0.75 mL) at room tem-
perature without aldehyde or H2O in a sealed tube by
NMR spectroscopy (JEOL L-500) was undertaken. In
contrast to both the preparation of the 2-propenyltin spe-
cies in the palladium-catalyzed reaction3 and the prepara-
tion of propene in the rhodium-catalyzed reaction,1 diallyl
ether was found to form.10 A plausible mechanism for the
iridium-catalyzed carbonyl allylation is illustrated in
Scheme 1, based on both the g-regioselectivity which was
observed with both 3 and 4 and the NMR spectroscopic
studies. The detection of diallyl ether suggests the forma-
tion of a p-allyliridium complex A; the p-allyliridium
complex A, derived from 1 and [IrCl(cod)]2 with SnCl2,
can undergo further nucleophilic attack by 1.6 The g-regi-
oselectivity using both 3 and 4 suggests the formation of
a s-allyliridium complex B; the preparation of 5b from ei-

ther 3 or 4 can be demonstrated by: (1) the transformation
of an initial syn,anti-mixed 1-methyl-p-allyliridium com-
plex derived from 3 or 4 into a mixture of (E)- and (Z)-2-
butenyliridium complex C accompanied by the coordina-
tion of aldehydes; and then (2) the nucleophilic addition
of the 2-butenyl moiety at the g-position (Scheme 2).

In conclusion, [IrCl(cod)]2 is superior to [RhCl(cod)]2 as
a catalyst for carbonyl allylation, because not only alde-
hydes but also ketones can be applied to the iridium-cata-
lyzed allylation with 1. The p-allyliridium complex A,
derived from 1 with SnCl2 and the iridium catalyst, should
be an amphoteric allylating agent that can function either
as an electrophile in the absence of an aldehyde or as a nu-
cleophile in the presence of an aldehyde, unlike either
palladium3 or rhodium catalysts.1 

Table 2 Iridium-Catalyzed Carbonyl Allylation with 1

Entry R1 R2 Time (h) 2; Yield (%)a

1 4-ClC6H4 H 17 91

2 4-CH3C6H4 H 24 80

3 PhCH=CH H 44 65

4 PhCH2CH2 H 48 67

5 CH2=CH(CH2)8 H 47 53

6 C6H13 H 45 61

7 c-C6H11 H 45 55

8 Ph CH3 89 46

9b C6H13 CH3 49 48

10b -(CH2)4- 44 41

11b -(CH2)5- 46 59

a Isolated yields.8

b The reaction was carried out at 50 °C. 
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Table 3 Iridium-Catalyzed Carbonyl Allylation with 3 or 4

Entry R 3 or 4 Time
(h) 

Yield
(%)a

5a/5b
(5b; syn/anti)b

1 Ph 3 47 74 7:93
(41:59)

2 4-ClC6H4 3 45 78 5:95
(30:70)

3 4-CH3C6H4 3 48 72 2:98
(40:60)

4 PhCH2CH2 3 48 59 2:98
(49:51)

5 C6H13 3 66 41 9:91
(40:60)

6 c-C6H11 3 74 49 67:33
(39:61)

7 Ph 4 49 70 8:92
(46:54)

8 4-ClC6H4 4 45 80 5:95
(43:57)

9 4-CH3C6H4 4 49 72 8:92
(46:54)

10 PhCH2CH2 4 47 62 1:99
(45:55)

11 C6H13 4 68 46 8:92
(44:56)

12 c-C6H11 4 69 50 36:64
(37:63)

a Isolated yields.8 
b The ratios were determined by 1H NMR spectroscopy.
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Scheme 1

Scheme 2
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