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Abstract: A convergent synthesis of the C31-C46 fragment of
phorboxazoles has been achieved. This involved the preparation of
a C31-C39 aldehyde and a C40-C46 benzothiazole secondary
sulfone followed by their coupling, employing modified Julia ole-
fination as a key reaction.

Key words: phorboxazole, Julia olefination, secondary sulfone,
sodium formate

Searle and Molinski reported the isolation of phorbox-
azoles A and B, C-13 epimeric oxazole-containing mac-
rolides, from an Indian Ocean sponge Phorbas sp. in 1995
(Scheme 1).2 Complete structural assignments for phor-
boxazoles have resulted from the extensive NMR studies.3

The phorboxazoles were reported to be extremely cyto-
static towards the National Cancer Institute’s panel of 60
tumor cell lines, and to have potent in vitro antifungal ac-
tivity against C. albicans and S. carlsbergensis.3a Togeth-
er with the altohyrtins4 and the bryostatins,5 they are
amongst the antitumor natural products as they inhibit
growth of tumor cells at sub-nanomolar concentrations in
vitro (mean GI50 1.58·10–9M).3b Unlike antimitotic natural
products such as Paclitaxel6 or the epothilones,7 the phor-
boxazoles arrest the cell cycle during S-phase.

The impressive biological activity and the unique struc-
ture of phorboxazoles have led to efforts directed towards
the synthesis of these compounds. The first total synthesis
of phorboxazole A was reported in 1998 by Forsyth and
co-workers.8a Synthetic studies towards the total synthesis
of phorboxazoles have also been published by several
groups.8

We made the disconnections to reveal the segments, re-
presenting C1-C19 (1), C20-C30 (2) and C31-C46 (3) as
depicted in Scheme 1. Our route to the C31-C46 fragment
3 in phorboxazoles was based on a convergent approach
using an E-selective Julia olefination9 reaction between
the secondary sulfone 4 and the aldehyde 5 as a key step.
Therefore, we planned to synthesise the sulphone 4 and
the aldehyde 5 from the chiral precursors (R)-p-methoxy-
phenylmethyl (MPM) glycidol 6 and (S)-MPM protected
homoallylalcohol epoxide 12, respectively. The synthesis
of sulfone 4 started with the metallation of acetylene (n-
BuLi, THF, –78 °C)10 followed by the addition of
BF3·OEt2 and (R)-MPM protected glycidol 613 to provide
secondary alcohol in 71% yield. Methylation of the free
hydroxyl group with NaH and MeI in THF, at 0 °C yield-
ed 7 in 98%. The terminal alkyne in 7 was hydrostannated
under standard conditions (n-Bu3SnH, AIBN, benzene,

Scheme 1
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80 °C, 48 h) to give the vinyl stannane in 70% yield as a
5:1 (E:Z) mixture of geometric isomers, which were sep-
arated by flash column chromatography. Facile tin-bro-
mine exchange reaction using NBS in acetonitrile at 0 °C
provided vinylic bromide 8 quantitatively. Chiral key in-
termediate 98d was obtained by treatment with DDQ
(CH2Cl2:H2O = 7:3; r.t.; 10 min) in 95% yield. Alcohol 9
was converted into a,b-unsaturated ketone by employing
Swern oxidation followed by Wittig olefination with 1-
triphenyl-phosphoranylidene-2-propanone to yield 10 in
72%. The carbonyl functionality in 10 was quantitatively
reduced to vinyl carbinol 11 with NaBH4 in MeOH at 0 °C
in 15 minutes. The target sulfone 4 was accessed in two
steps from the alcohol 11 (Scheme 2). First, compound 11
was converted to thioether under Mitsunobu reaction11

conditions in 89% yield, which was subsequently oxidised
to give the target sulfone 4 in 87% yield.

Aldehyde 5 was also prepared in a similarly straightfor-
ward manner as indicated in Scheme 3. Condensation of

THP protected propargyl alcohol with epoxide 1214 fol-
lowing the Yamaguchi protocol afforded the desired
alcohol 13 in 76% yield.11

Quantitative methylation of alcohol 13 with NaH and MeI
in THF at 0 °C and deprotection of THP gave the propar-
gylic alcohol 14 in 94% yield. Compound 15 was access-
ed by sequential reduction with LAH followed by
treatment of the resulting allyl alcohol with TPP in CCl4

in 86% overall yield. Sharpless asymmetric dihydroxyla-
tion reaction conditions using AD-mix b on allylic chloro
compound 15 afforded diol 16 in 78% (de 94%) yield.12

The protection of vicinal diol as isopropylidene with 2,2-
DMP and the deprotection of p-methoxybenzyl group
with DDQ resulted in the chiral alcohol 17 in 86% yield
(in two steps). Alcohol 17 was quantitatively oxidised to
the aldehyde with IBX, and treated with pre a-metallated
CH3COOEt (LiHMDS, THF; –78 °C; 15 min) to give 18
in 79% yield. The epimeric mixture 18 was oxidised with
PDC in DCM to b-keto ester 19 in 80% yield.

Scheme 3 Reagents and conditions: a) n-BuLi, BF3·OEt2, –78 °C; b) NaH, MeI, THF; c) p-TSA, MeOH; d) LAH, THF, reflux, 2 h; e) TPP,
CCl4, reflux, 12 h; f) AD-mix b, 0 °C, 48 h; g) 2,2-DMP, p-TSA, acetone; h) DDQ, CH2Cl2:H2O (7:3); i) IBX; j) LiHMDS; CH3COOEt, –78 °C;
k) PDC; l) PPTS, MeOH, 36 h; m) MOMCl, DIPEA; n) HCOONa, NaI, DMF, 80 °C, 3 d; o) NaBH4, MeOH, 0 °C; p) Dess–Martin periodinane
oxidation.

Scheme 2 Reagents and conditions: a) BuLi, BF3·OEt2, –78 °C; b) NaH, MeI, THF, 0 °C, 1 h; c) n-Bu3SnH, AIBN (cat.), benzene, 80 °C, 48
h; d) NBS, MeCN, 0 °C; e) DDQ, CH2Cl2:H2O (7:3); f) Swern oxidation; g) CH3COCH=PPh3, benzene; h) NaBH4, MeOH, 0 °C; i) 2-mercap-
tobenzothiazole, DEAD, TPP, THF; j) oxone, MeOH:H2O:THF (1:1:2), r.t.
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The substrate 19 was sonicated for 36 hours using PPTS
as the catalyst in MeOH, during which deprotection of the
isopropylidene group as well as the cyclisation occurred
to yield a single diastereomer of the cyclic acetal methyl
ether 20 in 50%. The free alcohol was protected with
methoxymethyl chloride and DIPEA in CH2Cl2 (in 94%
yield), and the chloro functionality was converted to for-
mate 21 with sodium formate in DMF at 80 °C for three
days in 70% yield.

Deformylation with NaBH4 in MeOH furnished primary
alcohol 23 in 96% yield. The Dess–Martin periodinane
oxidation afforded the aldehyde 5 in quatitative yield.
Coupling of the secondary sulfone 4 and the aldehyde 5
under the modified Julia olefination conditions gave an in-
separable mixture of E:Z geometrical isomers in 70%
yield in a ratio of 1:1 (Scheme 4).

Scheme 4

In conclusion, the practical synthesis of the highly func-
tionalised C31-C46 fragment, achieved in 17 steps (in the
longest linear sequence) from MPM protected (S)-ho-
moallyl alcohol epoxide 12,16 is described. Modified Julia
olefination between secondary benzothiazole sulfone 4
and the aldehyde 5 was achieved. Efforts towards the
synthesis of the other fragments 1 and 2 and the total syn-
thesis of phorboxazoles are under progress.
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[a]D = –19.8 (c 0.5, CHCl3).
Compound 4 (mixture of diastereomers): 1H NMR (200 
MHz, CDCl3): d = 8.22–8.18 (m, 2 H), 8.02–7.96 (m, 2 H), 
7.67–7.53 (m, 4 H), 6.02–5.44 (m, 8 H), 4.36–4.23 (m, 2 H), 
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Compound 6: 1H NMR (200 MHz, CDCl3): d = 7.25 (d, 
J = 8.8 Hz, 2 H), 6.81 (d, J = 8.8 Hz, 2 H), 4.45 (Abq, 
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(m, 1 H), 2.76–2.69 (dd, J = 12.3, 5.9 Hz, 1 H), 2.57–2.54 
(dd, J = 12.3, 5.9 Hz, 1 H). IR (neat): 2922, 1512, 1245 
cm–1. MS (EI): m/z = 194 [M+].
[a]D = +3.1 (c 1.5, CHCl3).
Compound 10: 1H NMR (200 MHz, CDCl3): d = 6.64–6.49 
(m, 1 H), 6.32–6.08 (m, 3 H), 3.93–3.70 (m, 1 H), 3.29 (s, 
3 H), 2.58–2.46 (m, 1 H), 2.38–2.26 (m, 1 H), 2.22 (s, 3 H). 
IR (neat): 2932, 1735, 1612, 1310 cm–1. MS (EI): m/z = 233 
[M+].
[a]D = +2.9 (c 0.6, CHCl3).
Compound 12: 1H NMR (200 MHz, CDCl3): d  = 7.18 (d, 
J = 8.8 Hz, 2 H), 6.84 (d, J = 8.8 Hz, 2 H), 4.40 (s, 2 H), 3.81 
(s, 3 H), 3.58–3.53 (m, 2 H), 3.06–2.96 (m, 1 H), 2.76–2.72 
(m, 1 H), 2.50–2.43 (m, 1 H), 1.89–1.78 (m, 1 H), 1.72–1.60 
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(m, 1 H). IR (neat): 2845, 1612, 1513 cm–1. MS (EI): m/z = 
208 [M+].
[a]D = +14.4 (c 1.0, CHCl3).
Compound 15: 1H NMR (200 MHz, CDCl3): d = 7.22 (d, 
J = 8.6 Hz, 2 H), 6.84 (d, J = 8.6 Hz, 2 H), 5.80–5.57 (m, 2 
H), 4.40 (s, 2 H), 4.00 (d, J = 7.2 Hz, 2 H), 3.79 (s, 3 H), 
3.55–3.45 (m, 2 H), 3.40–3.36 (m, 1 H), 3.31 (s, 3 H), 2.34–
2.18 (m, 2 H), 1.74–1.68 (m, 2 H). IR (neat): 2935, 1608, 
1513, 1252 cm–1. FAB-MS: m/z = 298 [M + 1].
[a]D = –17.6 (c 0.75, CHCl3).
Compound 17: 1H NMR (200 MHz, CDCl3): d = 4.09–3.93 
(m, 1 H), 3.88–3.71 (m, 3 H), 3.66–3.55 (m, 3 H), 3.41 (s, 3 
H), 1.96–1.94 (m, 2 H), 1.77–1.63 (m, 2 H), 1.40 (s, 6 H). 
IR (neat): 3482, 2921, 1462 cm–1. MS (EI): m/z = 252 [M+].
[a]D = +12.2 (c 2.0, CHCl3).

Compound 20: 1H NMR (200 MHz, CDCl3): d = 4.17 (q, 
J = 6.7 Hz, 2 H), 3.98–3.88 (m, 1 H), 3.75–3.58 (m, 4 H), 
3.38 (s, 3 H), 3.28 (s, 3 H), 2.68 (s, 2 H), 2.55–2.48 (m, 1 H), 
2.38–2.15 (m, 2 H), 2.05–1.92 (m, 2 H), 1.28 (t, J = 6.7 Hz, 
3 H). IR (neat): 3447, 2949, 1731, 1319, 1228 cm–1. 
FAB-MS: m/z = 279 [M – OMe].
[a]D = –78.6 (c 1.0, CHCl3).
Compound 23: 1H NMR (200 MHz, CDCl3): d = 4.71 (Abq, 
J = 10.4 Hz, 2 H), 4.13 (q, J = 6.7 Hz, 2 H), 3.79–3.48 (m, 5 
H), 3.41 (s, 3 H), 3.32 (s, 3 H), 3.21 (s, 3 H), 2.63 (Abq, 
J = 14.1 Hz, 2 H), 2.38–2.28 (m, 1 H), 1.98–1.88 (m, 1 H), 
1.49–1.31 (m, 2 H), 1.27 (t, J = 6.7 Hz, 3 H). IR (neat): 3443, 
2925, 1733, 1036 cm–1. MS (EI): m/z = 336 [M+].
[a]D = –19.2 (c 1.1, CHCl3).
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