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Abstract—Aggrecanases are recently discovered enzymes that cleave aggrecan, a key component of cartilage. Aggrecanase inhibitors
may provide a unique means to halt the progression of cartilage destruction in osteoarthritis. The synthesis and evaluation of
biphenylsulfonamidocarboxylic acid inhibitors of aggrecanase-1 are reported. Compound 24 demonstrated 89% inhibition of pro-
teoglycan degradation at 10 lg/mL and has an oral bioavailability in rat of 35%.
� 2005 Elsevier Ltd. All rights reserved.
Osteoarthritis (OA) is a debilitating disease resulting
from the breakdown of articular cartilage and character-
ized by chronic joint pain and inflammation, which re-
sults in significant reduction in the quality of life.
Currently there is no therapy available to halt the pro-
gression of this disease.

Aggrecan, a multidomain proteoglycan, is a major com-
ponent of cartilage and provides compressive resistance
to articular cartilage. During the early stages of osteoar-
thritis, and then throughout the disease, there is in-
creased loss of GAG (glycosaminoglycan)-rich
aggrecan fragments via proteolysis attributable to �agg-
recanase� activity. Eventually, the cartilage is eroded
and replacement joint surgery is usually required.

Aggrecanase-1 (agg-1)1 is a member of ADAMTS (A
Disintegrin and Metalloprotease possessing Thrombo-
spondin domain) family of zinc containing metallopro-
teases, responsible for the cleavage of aggrecan IGD
(Interglobular domain) at the Glu373-Ala374 peptide
bond, a unique site untouched by any previously identi-
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fied enzyme. Inhibition of agg-1 may impart overall car-
tilage protection and offer a potential therapy that could
alter the progression of OA.2

Several reports in the literature described aggrecanase
inhibitors that contain hydroxamic acid zinc-chelating
groups.3,4 Modification around hydroxamic acid func-
tional group by introducing polar functionality was
reported to have a favorable effect on absorption and
clearance through steric hindrance and intramolecular
hydrogen bonding.3a The use of other zinc-chelating
groups, such as the carboxylic acid, has become a pop-
ular approach for hydroxamic acid replacement in other
matrix metalloproteinase programs.5

In our research efforts toward agg-1 inhibitors, we
conducted high throughput screening of our corporate
library and discovered that the hydroxamate com-
pound 1a, reported by Novartis as a non-selective
stromelysin inhibitor (CGS 27023A),6 showed 92%
inhibition of agg-1 at a concentration of 25 lM.7 To
our surprise, 1b (the S-isomer of 1a) was inactive to-
ward agg-1 (Table 1).

This enantiomeric preference for an R-configuration was
examined using an agg-1 homology model derived from
the venom metalloproteinase, Atrolysin C (PDB code:
1DTH).8 The catalytic domains of the two proteins
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Table 1. High throughput screening hit

N
N
H

O
*HO

S
O O

OMe

N

Compound Enantiomer Agg-1 inhibition at 25 lM

1a R 92%

1b S Not active

312 J. S. Xiang et al. / Bioorg. Med. Chem. Lett. 16 (2006) 311–316
share �43% homology.9 The homology model was built
in Sybyl 6.7 (Tripos, Inc.) using the Composer module
for Homology Modeling. Docking of compound 1a to
the homology model placed the hydroxamic acid moiety
around the Zn, the sulfonyl group in H-bonding dis-
tance to backbone NHs of Leu330 and Gly331, the
methoxy phenyl within the S1 0 pocket, and the pyridine
substituent facing the solvent near the S2 0 area of the ac-
tive site. Only the R-enantiomer 1a can dock in this
manner, as the comparable conformation of the S-enan-
tiomer 1b would clash with Met332 and other residues
within the S2 0 area of the active site (the bC–bD loop)
(Fig. 1).

The binding model of compound 1a led us to explore
carboxylic acid derivatives with the same enantiomeric
preference. Structure-based explorations using the
homology model suggested that a biphenyl P1 0 ligand
(2) might be best because of the potential for: (1) enthal-
pic p-stacking interactions with the active site His
(His361), (2) enthalpic van der Waals interactions due
to the shape of the S1 0 pocket (flattened cylinder), and
Figure 1. A close-up and schematic view of the predicted binding

mode of compound 1a to agg-1 homology model derived from

Atrolysin C.
(3) entropic gains from the hydrophobic effect, as this
area is encapsulated by hydrophobic residues (e.g.,
Leu330, Met395, and Phe357).

Compound 2 was synthesized and showed an agg-1 IC50

of 3.0 lM (Table 2).10 Biophysical studies confirmed
that 2 binds to agg-1 in 1:1 stoichiometry. A compound
with a bent biphenyl configuration (3) was inactive pre-
sumably because it does not fit into the S1 0 narrow
hydrophobic channel. Attempts to generate a hydrogen
bond between the enzyme and the inhibitor from the
biphenyl backbone (4–7) were not successful. It was
thought that the substituents may either disrupt the flat-
tened cylindrical shape of the molecule (4–6) or were too
congested to fit into the narrow S1 0 pocket (4–7), leading
to reduced activity against agg-1. A para hydroxy group
(8), which retained its flattened cylindrical shape, re-
tained activity. Therefore, this para-position provided
a good attachment point for further modifications.

Another point of modification was the amino acid
headpiece. A variety of amino acids have been ex-
plored (Table 3). Compound 9 with an LL-valine head-
piece had an IC50 > 100 lM toward agg-1, further
confirming the enantiomeric preference of this enzyme.
Agg-1 IC50 of the homologated acid 10 was �100 lM.
The extra carbon atom increases the spacing between
the carboxylic acid and the P1 0 group such that they
cannot simultaneously achieve the required interac-
tions. Most other modifications (11–14) were tolerat-
ed, suggesting that these side chains might reside in
a spacious domain. As suggested by the homology
model, there is limited space for N-substitution, and
indeed, a small N-alkyl substituent (15) yielded good
Table 2. Modifications on biphenyl backbone
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Table 4. Linker modification

H
N

HO

O

S
O O

R

Compound R Agg-1 IC50 (lM)

17
O

O

O
0.35

18
O

O

O
11.6

19
O

O

O
0.086

20
OO

NH
7.5

21
O

O
1.4

22
O

O
3.8

23
O

0.4

24

O

O
0.7

Table 5. Inhibitory activities (IC50, nM) of compound 24

MMP-1 MMP-2 MMP-13 MMP-14

>100,000 28 4.4 3000

Table 3. Modification of amino acid headpieces
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activity, while a bigger group (16) led to diminished
activity. For simplicity, we kept the DD-valine headpiece
for further modifications.

Since the homology between agg-1 and Atrolysin C is
much lower in the depths of the S1 0 pocket, our model
was less useful in predicting substitutions beyond the
biphenyl P1 0 group. Table 4 shows the SAR on further
modification of the para-position of the biphenyl back-
bone. A benzofuran ester P1 0 ligand (17) improved
agg-1 activity by 10-fold. The smaller furan analog
(18) resulted in decreased activity. A C3-methyl group
(19) on the benzofuran further improved agg-1 activity
by 4-fold (IC50 = 86 nM). Other linkages intended to im-
prove metabolic stability while mimicking ester binding,
including amide (20), ether (21), and ketone (22), gave
reduced activity. A trans double bond configuration
(23) retained activity; however, this group is prone to
metabolism. The C3-methyl ether 24 is 2-fold more ac-
tive than ether 21.11
The pharmacokinetics of compound 24 were examined
via two different routes of administration, intravenous
(iv) and oral (po), to male Sprague–Dawley rats. Ani-
mals received a single iv bolus of 2 mpk and a po dose
of 10 mpk. The compound exhibited low clearance
(16.1 mL/min/kg). The oral bioavailability was 35%
(T1/2 = 277 min, Cmax = 1360 ng/mL).

Compound 24 was tested for its ability to inhibit MMP-
1, MMP-2, MMP-13, and MMP-14. This compound is
selective against MMP-1 and -14, but is a more potent
inhibitor of MMP-2 and MMP-13 (Table 5). Since
MMP-13 plays an important role in cartilage degrada-
tion, inhibition of MMP-13 is also beneficial to prevent-
ing osteoarthritis.2,14

Compound 24 demonstrated excellent cartilage penetra-
tion properties.12 In an interleukin-1 stimulated bovine
cartilage explant assay,13 it gave 89% inhibition of pro-
teoglycan inhibition at 10 lg/mL after a 3-day incuba-
tion (Fig. 2). According to early work published by
Pratta2 and Little,14 the aggrecan is degraded early, dur-
ing the first week of culture (day 3–7), whereas the col-
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Figure 2. Proteoglycan inhibition of compound 24.
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Scheme 3. Reagents and conditions: (a) DIEA, DCM, 3 h (91–95%);

(b) PhB(OH)2, Pd(PPh3)2Cl2, CsF, NMP, 100 �C, 18 h (55%); (c) for 5,
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7, boronic acid, Pd(PPh3)4, K2CO3, DME/H2O, 80 �C, 12 h (71–83%);

(d) Pd/C, H2, THF, 12 h (100%); (e) TFA, DCM, 3 h (100%).
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lagen is not rapidly degraded until later in the culture
period (day 8–14). Therefore, the activity in this 3-day
assay is indicative of aggrecanase inhibition. There is
no significant involvement of MMPs during this early
stage of proteoglycan degradation.2,14

The synthesis of compounds 2–24 is shown in Schemes
1–3. Due to the presence of a chiral center sensitive to
racemization, the synthesis of these compounds was car-
ried out in the absence of strong basic media.15

As shown in Scheme 1, sulfonylation of the amino ester
25 gave 26, which upon hydrolysis formed compounds 2
and 9 in excellent yield. Alkylation of the sulfonamide
nitrogen atom and hydrolysis led to compounds 15
and 16. Sulfonamide formation was performed on b-
amino acid 28 using transient silylation condition16 to
give 10. Compounds 11–14 were synthesized from Wang
resin through Fmoc deprotection, sulfonamide forma-
tion, and TFA cleavage, in excellent yields (Scheme 2).
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Scheme 1. Reagents and conditions: (a) RSO2Cl, DIEA, DCM, 3 h

(93–100%); (b) TFA, DCM, 3 h (95–100%); (c) (i)—Me3SiCl, DCM,

reflux, 5 h; (ii)— Et3N, Ph-PhSO2Cl (33%); (d) R2X, K2CO3, CH3CN,

reflux, 5 h (45–77%).
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Scheme 2. Reagents and conditions: (a) piperidine, DMF, 1 h; (b)

biphenyl-4-sulfonyl chloride, iPr2NEt, CH2Cl2; (c) TFA.
Suzuki coupling was used to construct the second ben-
zene ring of the biphenyl backbone, leading to com-
pounds 31, 5–8 (Scheme 3), 33 and 34 (Scheme 4).
Hydrogenation of 31, followed by hydrolysis, gave 4.

Esterification (17–19) or alkylation (21, 24) of the OH
group on compound 33 led to compounds with P1 0 ester
or ether linkages. Heck coupling on 34 gave compound
23. 2-Acylbenzofuran 36 was synthesized according to
the literature procedure.17 Stille coupling of tributyltin
compound 35 (synthesized from 29) with 32 gave 22.

In summary, we described herein the design, synthesis,
and biological evaluation of biphenylsulfonamide car-
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Scheme 4. Reagents and conditions: (a) boronic acid, Pd(PPh3)4,
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toluene, reflux, 12 h (56%); (c) carboxylic acid, DCC, DMAP, DCM,

3.5 h (31–71%); (d) benzofuran-2-CH2Br, K2CO3, DMF, 90 �C, 18 h

(35–48%); (e) 2-bromobenzofuran, Pd(dba)3, [tBu3PH]+BF4
�,

Cy2NMe, dioxane, microwave, 180 �C, 1 h (25%); (f) 2-(4-bromophe-

nyl)acetyl chloride, TiCl4, DCM, �78 �C, 20 min (17%); (g) Pd(PPh3)4,

toluene, reflux, 12 h (20%); (h) TFA, DCM, 3 h (95–100%).
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boxylic acids as aggrecanase-1 inhibitors. The design
was based on HTS results and a homology model de-
rived from Atrolysin C. This limited SAR study suggest-
ed that biphenylsulfonamide carboxylic acids provided a
good starting point and the benzofuran moiety can im-
prove agg-1 inhibition. Compounds such as 24 show
good oral bioavailability and inhibition of proteoglycan
degradation in a cell-based assay. Compound 24 also
shows inhibitory activity against MMP-13. Detailed
study of this dual Agg-1/MMP-13 inhibition will be dis-
closed in due course.
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