The Journal of Organic Chemistry

Subscriber access provided by ECU Libraries

Article

Spirocyclic tetramates by sequential Knoevenagel and [1,5]-prototropic shift

Laia Josa-Culleré, Michael G Hirst, Jonathan P Lockett, Amber L. Thompson, and Mark Gerard Moloney J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b01345 • Publication Date (Web): 05 Jul 2019 Downloaded from http://pubs.acs.org on July 6, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Spirocyclic tetramates by sequential Knoevenagel and [1,5]-prototropic shift

Laia Josa-Culleré,[‡] Michael G. Hirst,[‡] Jonathan P. Lockett,[‡] Amber L. Thompson[‡] and Mark G. Moloney^{*‡†}

[‡]Chemistry Research Laboratory, University of Oxford, Mansfield Rd, University of Oxford, OX1 3TA, U.K and [†]Oxford Suzhou Centre for Advanced Research, Building A, 388 Ruo Shui Road, Suzhou Industrial Park, Jiangsu, 215123, P.R. China.

Keywords: Spirocycles; Tetramates; Antibacterial

Highly functionalised spirocyclic tetramates were prepared *via* a sequential Knoevenagel reaction and [1,5]-prototropic shift (T-reaction) of bicyclic tetramates. While these compounds isomerise in solution, stable analogues can be prepared *via* appropriate choice of substituents. Further modification of these compounds allows for introduction of aromatic groups, making them suitable as skeletons suitable for application in medicinal chemistry.

1. Introduction

It is now widely appreciated that the antibacterial drug pipeline is poorly populated,¹⁻³ that models for antibacterial drug development need revision,⁴⁻⁸ and that the emergence of antibacterial resistance creates a constant need for new drugs.9-11 Therefore, the identification of suitable and effective drug discovery paradigms has become urgent.12-18 Recently, spiropyrimidinetrione PNU-286607 1 (Figure 1) was reported to have a broad spectrum antibacterial activity, including against fluoroquinoline resistant strains, and a novel mode of action.¹⁹ It was shown to target the β subunit of bacterial type II topoisomerases via a novel mechanism of inhibition. The common pharmacophore of the class has been extended to include 2,^{20,21} 3²² and AZD0914 4²³ (Figure 1). The (-)-enantiomer exhibits both the highest antibacterial activity along with the highest inhibitory effects, while the (+)-isomer is inactive. More recently, 4 has also shown high activity against the multidrug-resistant Neisseria gonorrhoeae, giving it the potential to combat the growing public health concern of gonorrhea.24,25

The synthesis of these systems relies on a very effective intramolecular cyclisation, known as the "T-reaction" or the "*t*-amino effect",²⁶ which involves a suprafacial [1,5]-prototropic shift followed by carbon-carbon bond formation (Scheme 1). The transformation is promoted when a tertiary aromatic amine is substituted with an *ortho*-electron-poor double bond, and it has been successfully employed to access a range of tricyclic quinoline

systems with multiple stereocentres.^{27–30} The asymmetric synthesis of **1** has been developed by Hurd and co-workers,³¹ where *trans*dimethylmorpholine was used as a source of asymmetry, and the reaction was driven towards the thermodynamic product where the substituents in the morpholine ring were equatorial. This proceeded *via* isomerisation of the initial kinetic intermediate. While the barbiturate nucleus is well suited to this process,^{31–33} given our interest in related tetramates both for antibacterial drug discovery³⁴ and for the generation of novel 3-D drug templates,³⁵ we examined them for their suitability in the T-reaction. Access to spirocyclic tetramates has been rarely reported.^{36–39} In our case, an additional level complexity is added by the chiral nature of the tetramate, as opposed to the non-chiral barbiturate, which converts the spirocentre into yet another quaternary carbon.

Scheme 1. Generalized T-reaction.

2. Results and Discussion

2.1. Synthesis of spirocyclic tetramates

The synthesis of the required bicyclic tetramate cores **5a,b** (Schemes 2 and 3), which are readily available from serine and cysteine, has been reported.⁴⁰ The required *o*-aminobenzaldehydes **6a-d** were obtained by reaction of cyclic amines with *o*-fluorobenzaldehyde using literature methodology (Scheme 3).⁴¹

Scheme 2. Synthesis of spirocyclic tetramate 8a and alkylidene 10.

In the first attempt to access the spirocyclic tetramate, it was found that upon mixing tetramate **5a** with aldehyde **6a** in methanol at reflux and subsequent cooling, spontaneous

precipitation took place to afford spiro-tetramate **8a** (Scheme 2). The isolated product was found to be a mixture of diastereoisomers, which were quantified by the H(1) doublets and the H(3) singlet. Interestingly, the number of isomers and the diastereomeric ratio changed depending on the solvent used (Table 1). While non-polar solvents (C₆D₆, tol-d₈) gave a single isomer (minor isomer <2%), with DMSO and acetone 3 isomers were observed. These data suggest that **8a** obtained as a precipitate is a single isomer, but that it may isomerise upon dissolution.

Table 1. Solvent dependence of the number of isomers of 8a.Spectra recorded 5-10 min after dissolving the precipitate.

*Only 4.8-5.2 ppm shown

In an attempt to isolate the presumed alkylidene intermediate 7a, 5a and 6a were stirred at room temperature in methanol, but purification of 7a proved challenging as it cyclised to 8a both during *flash* column chromatography and in chloroform-*d*. That formation of 7a, which would be expected from initial Knoevenagel condensation, was feasible, was shown by reaction of tetramate 5a with benzaldehyde 9. Under the same conditions, the alkylidene product 10 was isolated as a 1.2:1 mixture of the *E* and *Z* isomers (Scheme 2). The characteristic vinylic protons (7.75 – 7.85 ppm) of product 10 were not present in crude 8a, which supports that the multiple products observed by NMR correspond to isomers of the spirocycle, and do not include intermediate 7a.

Treatment of tetramates **5a,b** with a range of amines **6a-d** (prepared by the reaction of *o*-fluorobenzaldehyde with amines **12a-d**) following the same procedure (reflux in MeOH followed by precipitation and filtration) furnished spirocyclic tetramates **8a-e** in 7-58% yield (Scheme 3 and Table 2). The morpholine analogues **8c-e** were isolated at lower yields than that aliphatic derivatives **8a,b**.

Scheme 3. Synthesis of aromatic amines 6a-d and spirocyclic tetramates 8a-e.

Examination of the cyclisation under alternative literature procedures was made, but refluxing in either ⁿbutanol at 117 °C³¹ or in EtOH/H₂O,⁴² or adding pyrrolidine as a catalyst,⁴³ resulted in either lower yield or no isolated product.

 Table 2. Synthesis of spirocyclic tetramates
 8a-e.

Compound	Х	Y	R	Yield	# isomers	d.r.
				(%)	(C_6D_6)	
8a	0	CH_2	Н	37	2	98:2
8b	0	-	Н	58	1	-
8c	0	0	Н	7	1	-
8d	0	0	CH ₃	31	2	8:2
8e	S	0	CH_3	23	2	8:2

2.2. Investigation into isomerism

To investigate the stability of spirocycles **8a-e** in solution, the isolated precipitates where dissolved in C_6D_6 , and NMR spectra were recorded over time (Figure 2). While all analogues had equilibrated to 4 diastereomers after 2 weeks, the rate of isomerisation and ratio of isomers was dependent on the nature of the azacycle. The fastest rates were observed for piperidine **8a**, which reached equilibrium after 24 h, and dimethyl-morpholine analogues **8d** and **8e**, where equilibration was reached after 3 days. For pyrrolidine **8b** and morpholine **8c**, new isomers were only observed after several days. Separation of the different isomers proved impossible, as the individual isomers had the same retention factors.

Isomerisation of these compounds probably involves an intramolecular mechanism where the spirocycle reverts to zwitterion **13** *via* a retro-Mannich type process, as indicated in Scheme 4. Such a phenomenon has been previously reported for related systems and has been utilised to access PNU-286607.^{21,31} It should be noted that in that case, epimerisation also occurred at the morpholine methyl substituent ((*C*(4')-Me). For the spirocycles described herein, the formation of only 4 isomers for dimethyl-morpholine analogues **8d-e**, which is the same number as for the unsubstituted **8a-c**, suggests that no epimerisation at *C*(4') occurs and that only the 2 stereocentres *C*(4a') and *C*(6) epimerise. Importantly, Ruble *et al.* observed epimerisation only when the mixture was heated at temperatures over 80 °C,³¹ and in our synthesis, spirocyclisation was performed at 65 °C.

Scheme 4. Suggested mechanism of cyclisation and isomerisation.

The observed tendency of these analogues to isomerise in solution led to the question of whether the initial isolated isomer obtained *via* precipitation was the kinetic product of the reaction, or whether it was the only isomer to precipitate under the reaction conditions. When solid **8d** was stirred in EtOAc at room temperature for 8 h, followed by concentration under vacuum, a mixture of 4 isomers was observed by NMR spectroscopy in C_6D_6 (Figure 3). Redissolution of the mixture in methanol led to the precipitation of only one of the isomers, and re-analysis of the filtrates indicated the presence of 3 isomers, including the precipitated one. These results seem to indicate that while all isomers could be formed during the reaction, only one of them precipitates out of methanol, and this could partly explain the low isolation yields.

Figure 3. ¹H NMR spectra (in C_6D_6) of H(3) singlet of (a) precipitate **8d**, (b) **8d** stirred in EtOAc for 8 h, (c) mixture concentrated and precipitated in methanol, (d) the remaining filtrates.

An attempt was made to block the reverse process by reducing the tetramate ketone group, a reaction that can be conducted easily on simpler substrates.^{40,44} However, reaction of **8d** with sodium borohydride gave not the desired alcohol, but instead ring opened product **14** (Scheme 5). The enol form was clearly indicated by the C(7) ¹³C NMR chemical shift, as well as the lack of C(6) proton on the ¹H NMR spectrum. This product probably resulted from reduction of the iminium ion formed upon ring opening, and further supports that opening of the spirocycle is possible during isomerisation (Scheme 4).

Scheme 5. Reduction of ketone 8d.

Of interest was the effect of the introduction of electron withdrawing or donating groups on the aromatic ring (Scheme 6). The nitro derivatives **8f** and **8g** were successfully synthesised using the previous method, but were isolated in low yields as 9:1 and 8:1 mixtures of diastereomers respectively. Nevertheless, these analogues did not isomerise in C_6D_6 over several weeks, and this is the first example of such a spirocyclic tetramate that is stable in solution. The electron withdrawing nitro groups could be deactivating the retro-Mannich reaction required to ring-open the spirocycle. A similar effect could also explain the lower yields of the transformation compared to the analogous **8d** and **8e**, as the low electron density on the amine can also decrease the rate of the initial [1,5]-hydride shift. Enhanced stability of the nitro analogues has also been previously observed in barbiturates.⁴⁵

Scheme 6. Introduction of electron withdrawing (8f,g) and donating (8h) groups to spirocyclic tetramates.

On the other hand, no product precipitated from the reaction mixture for the methoxy derivative 8h. NMR analysis of the concentrated crude material showed a mixture of the alkylidene intermediate as well as a mixture of suspected isomers of the product, and it could be that the increased polarity of this analogue increases its solubility in methanol, preventing precipitation.

2.3. Stereochemical identification of the spirocyclic tetramates

Having shown that formation of spirocyclic tetramates is possible, of interest was the determination of their stereochemical identity. NOE analysis (Figure S1, SI) of the major isomer in the analogues where Z=H (**8a-c**) suggested that the azacycle is placed at the concave face of the bicyclic tetramate, as indicated by correlation between $H(1)-H(4^{2})$ or $H(3)-H(4^{2})$. Conversely, for dimethylmorpholine compounds **8d-g**, correlations were observed between $H(1)-H(7^{2})$ and/or $H(3)-H(7^{2})$, indicative of the aromatic ring residing at the concave face of the bicycle.

Figure 4. Major isomers of **8a-g** predicted from NOE interactions and CLIP-HSQMBC coupling constants.

Following the stereochemical determination at the spiro-centre, we turned our attention to the configuration of the other chiral centre, 5'. For this purpose, the isolated isomers were analysed by CLIP-HSQMBC. This NMR technique provides accurate measurements of long-range proton-carbon coupling constants,⁴⁶ which are dependent on the dihedral angle between the atoms.⁴⁷ A large ³J (6 – 9 Hz) represents a dihedral angle tending to 180°, showing a pseudo-*trans* relationship, while a small ³J is the result of a pseudo-*cis* relationship, with dihedral angles 20-70°. Samples were prepared in C₆D₆ directly before analysis. Analysis of the *H*(5')-*C*(5) and the *H*(5')-*C*(7) angles revealed that, in all compounds, *H*(5') is pseudo-cis to the amide carbonyl *C*(5), and pseudo-trans to ketone *C*(7) (Scheme 4).

To determine the stereochemistry of the additional chiral centres (2' and 4') in the analogues with a dimethyl-morpholine, the coupling constant between the 4' and 5' protons was examined. For all analogues, the ³J was large (8.7 - 9.5 Hz), indicating a *trans*- configuration between the two protons, placing the methyl groups in the equatorial positions of the ring. Assuming that no epimerisation of these positions occurs during the reaction or upon isomerisation, both methyl groups should be *cis*- as in the starting amine **12d**.

Figure 5. Structure of spirotetramates 8a (a), 8b (b), 8c (c), 8d (d) and 8e (e) drawn from results of single crystal X-ray diffraction studies.⁴⁸ Displacement ellipsoids are drawn at 50% probability.

Therefore, the data from NOE correlations and the CLIP-HSQMBC coupling constants suggest that, when R=H, the major diasteroisomer corresponds to **8a-c**, while when R=Me the structure is **8d-g** (see Figure 4). The difference between these analogues could be due to the large steric hindrance when the additional methyl groups reside in the concave site of the bicycle, favouring in these latter cases the formation of a different isomer. It is worth noting that **8d** and **8e** had been shown to quickly isomerise in solution to an almost 1:1 mixture of another isomer. While the newly formed compounds could be the epimer at

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16 17

18

19

20

21

22

23

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

spirocentre C(6), their complex NMR spectra impeded their precise stereochemical identification.

The absolute structure of the precipitates was determined using single crystal X-ray diffraction.⁴⁸ The stereochemistry at 5', 6, 2' and 4' were indeed as predicted for all the analogues, as shown in Figure 5. The torsion angles between H(5')-C(5) and H(5')-C(7) correlate with those calculated with CLIP-HSQMBC (Table S1).

2.4. Further functionalisation of the spirocyclic tetramates

Having prepared these examples of spirocyclic tetramates, and determined their stereochemistry, of interest was whether the methodology could be extended to (1) the preparation of different tetramate bicycles; (2) the introduction of acyclic amines; and (3) further modification of the aromatic ring.

2.4.1. Modification of the tetramate

Using *L*-threonine, the bicyclic tetramate can be prepared with an additional methyl group at $C(1)^{49}$ (Scheme 7). Treatment of tetramate **5c** with pyrrolidine aldehyde **6b** resulted in no precipitation of product, and NMR analysis of the crude mixture after removal of solvent showed recovered starting material. It appears that the extra methyl at the concave face of the bicycle imposes sufficient extra steric strain that formation of the spirocycle is prevented.

Scheme 7. Modification of the tetramate core *via* introduction of different groups at C(1) and C(3).

It has previously been shown that the tetramate **16** derived from cysteine may be prepared with aromatic groups at the C(3) position, and that in this case tetramate cyclisation leads to isomer **16**.⁵⁰ To obtain the C(6)-unsubstituted analogue suitable for spirocyclisation, ethyl ester **16** was refluxed to yield decarboxylated **17**. However, treatment with aldehyde **6b** resulted again in recovered starting material. These results differ from the observed rapid reaction of **5a**,**b** with aldehydes **6a**-**d**, and illustrate the strict steric requirements of these systems, where additional hindrance can lead to a complete loss of reactivity.

2.4.2. Introduction of acyclic amines

52 Thus far, the synthesised spirotetramates were derived from cyclic amines, and of interest was the extension to the introduction of 53 non-cyclic amines. For this purpose, o-aminobenzaldehydes with 54 a range of amines 19a-j were synthesised (Scheme 8 and Table 3). 55 Under the same conditions used to prepare 6a-d, yields for 21a-j 56 were significantly reduced, and in particular as the size of the R 57 groups increased. Thus, moving from $R_2 = Me(21b)$ to Et (21c) 58 led to a large drop in reactivity even at longer reaction times, and 59 with Pr (21d), only starting material was recovered. Other than 60 steric constraints, substitution with these acyclic amines could also be less entropically favourable as compared to the cyclic ones.

Scheme 8. Preparation of spirotetramates with acyclic amines.

Table 3. Synthesis of spirotetramates 22 from acyclic amines 21.

					21		22	
Entry	R ₁	R ₂	R ₃	R ₄	Yield [%]	Time [h]	Yield [%]	# isomers
a	Н	Et	Me	Н	18	24	7	2 (3:1)
b	Н	Me	Me	Me	16	48	0	-
c	Н	Et	Me	Me	traces	72	-	-
d	Н	ⁱ Pr	Me	Me	0	-	-	-
e	Н	Me	Ph	Н	12	48	0	-
f	Н	Et	Ph	Н	25	48	0	-
g	Н	Me	Ph	Ph	0	-	-	-
h	Н	Bn	Ph	Н	7	24	43	4
i	NO ₂	Et	Me	Н	50	24	0	-
j	Br	Et	Me	Н	47	24	0	-

With the aminobenzaldehydes in hand, spirocyclisation with 5a was attempted under the previous reaction conditions. Unfortunately, in this case, no solid was formed upon cooling of the reaction mixture in any of the examples, and complex reaction mixtures were isolated after solvent evaporation. While the aldehyde had been consumed in all cases, some product by NMR and MS analysis was only seen in 21a and 21h, and these were purified by *flash* column chromatography to give 22a and 22h as a mixture of 2 and 4 isomers respectively. Product 22a was chosen for stereochemical determination due to its simpler NMR spectrum. NOE analysis showed no correlations between protons H(1) or H(3) and H(5') or H(7'). It could be that the higher flexibility of the non-cyclic substituents leads to a less defined conformation, decreasing NOE correlations as compared to the cyclic 8a-g. Having previously proven the reliability of CLIP-HSQMBC to predict the isomeric nature of 8a-g, the same technique was employed for 22a. The measured ³J coupling constants of the major and minor isomers were compared to the predicted torsion angles of the favoured conformations obtained from the MM2 energy minimisation tool of ChemBio3D (Table S2, Figure S2). In this case, the major isomer was found to place the aromatic ring in the inner face of the ring (22a), and consistent with the previous observations, the minor isomer arises from isomerisation around the spirocentre to give 22a (Figure 6).

Figure 6. Isomers of 22a based on the CLIP HSQMBC results.

2.4.3. Modification of the aromatic ring

Finally, it was also of interest to study the potential for functionalisation of the aromatic group. For this purpose, pyrrolidine aldehyde 23 was prepared, and reacted with tetramate 5a to give spiro 8i as a mixture of 4 diastereomers (Scheme 9). This could be converted by Suzuki coupling to phenyl derivative 8j as a mixture of 4 diastereomers. When the order of the reactions was reversed by performing the Suzuki reaction first on 23 before spirocyclisation, the same mixture of 4 diastereomers was isolated, further confirming that these spirocyclic systems isomerise in solution.

Scheme 9. Functionalisation of the aromatic ring *via* Suzuki coupling.

3. Conclusion

In summary, we have shown that the preparation of spirocyclic tetramates is possible, using a route that involves initial Knoevenagel condensation of tetramates 5a-c with aminobenzaldehydes, followed by [1,5]-hydride shift. The products, which can be isolated as one major diastereomer, were found to isomerise in solution, and the stability was dependent on the solvent and on the nature of the azacycle. This equilibration can be blocked by introducing electron withdrawing groups onto the aromatic ring. The stereochemistry of the major isolated isomers was determined using NOE and CLIP-HSQMBC correlations, and confirmed by X-ray crystallography. Further modification of the tetramate moiety of these systems was challenging, but it was possible to introduce some acyclic amines and use Suzuki coupling.

4. Experimental section.

General methods. All reagents were obtained from commercial sources and used without further purification. Anhydrous solvents were dried by pre-storing them over activated 3 Å molecular sieves before being passed through an activated alumina column on a solvent tower under N2 pressure. Analytical thin-layer chromatography (TLC) was carried out on Merck aluminum foil backed sheets precoated with 0.2 mm Kielselgel 60 F254. The spots were visualized by UV irradiation (λ 254 nm) and by staining with a KMnO₄ solution followed by heating. Flash column chromatography was performed on Kielselgel 60 silica gel (230-400 mesh particle size). Optical rotations were recorded at 25 °C on a polarimeter using the D line of sodium (589 nm) and a path length of 1 dm. Concentrations (c) are given in g/100 mL, and specific rotations ($[\alpha]_D^{25}$) are quoted in 10⁻¹ deg cm² g⁻¹. Melting points were measured with a capillary melting point apparatus and 59 are uncorrected. Infrared spectra were recorded on an FT-IR 60 spectrometer; absorption maxima (vmax) are reported in

wavenumbers (cm⁻¹) and only selected peaks are reported. ¹H NMR spectra were recorded 400, 500 and 600 MHz, and ¹³C NMR spectra at 100 and 125 MHz. Chemical shifts (δ_H and δ_C) are reported in parts per million (ppm) and are referenced to the residual solvent peak (CDCl₃: δ 7.26 for ¹H NMR and δ 77.2 for ¹³C NMR; C_6D_6 : δ 7.16 for ¹H NMR and δ 128.1 for ¹³C NMR). Coupling constants (J) are quoted in hertz. Two-dimensional COSY, NOE and HMBC experiments were recorded at 500 MHz. Low-resolution mass spectra (m/z) were recorded using electrospray ionization (ESI); selected peaks are reported in daltons and their intensities given as percentages of the base peak. High-resolution mass spectra (HRMS) were recorded using TOF (ESI, EI or CI). In the cases where the products exist as mixtures of tautomers or diastereomers, the ratio was calculated from the ¹H NMR spectrum. For the NMR assignment of the spirocyclic compounds, the following numbering has been employed to facilitate comparison between analogues. The bicyclic tetramate is numbered following IUPAC guidelines.

1.3 Synthetic procedures

Compounds 5a,⁵¹ 5b,⁵² 5c⁴⁹ and 16⁵⁰ were prepared using the reported methods.

General procedure A: Formation of o-aminobenzaldehydes

Potassium carbonate (1.2 equiv) and the desired amine (1.2 equiv) were added to a solution of the required *o*-fluorobenzaldehyde (1 equiv) in DMF (*c* 0.5 M). The reaction mixture was heated to reflux for 3-6 hours, and then left to cool to room temperature before being diluted with water. The aqueous layer was extracted with chloroform, and the organic layer was washed with water, dried over anhydrous MgSO₄ and evaporated *in vacuo*. The resulting oil was then eluted with 10% EtOAc in petrol through a silica plug to give the desired *o*-aminobenzaldehyde.

General procedure B: Spirocyclisation

The bicyclic tetramate **5a-c** (1 equiv) was added to a solution of *o*-aminobenzaldehyde (1.2 equi) in methanol (c 0.2 M) and the solution was heated to reflux for 2-6 h. The solution was then cooled to 0 °C and the product was precipitated out of solution. In the cases were no solid precipitates, the solvent was concentrated under reduced pressure.

2-(Piperidin-1-yl)benzaldehyde (6a)

General procedure A (5 h) from 2-fluorobenzaldehyde (170 µL, 1.61 mmol), piperidine (185 µL, 1.88 mmol) and potassium carbonate (263 mg, 1.88 mmol) to give **6a** (216 mg, 1.14 mmol, 71%) as a yellow oil. R_f (10% EtOAc in petrol) 0.53; v_{max}/cm^{-1} 1685, 1595, 1452; ¹H NMR (400 MHz, CDCl₃) 10.30 (1H, s, CHO), 7.79 (1H, dd, *J* 7.6, 1.8, C(6)*H*), 7.49 (1H, ddd, *J* 8.6, 7.2, 1.7, C(4)*H*), 7.09 (1H, d, *J* 7.8, C(3)*H*), 7.06 (1H, t, *J* 7.4, C(5)*H*), 3.05 (4H, t, *J* 5.0, C(2')*H*₂), 1.76 (4H, quint, *J* 5.7, C(3')*H*₂), 1.54 – 1.65 (2H, m, C(4')*H*₂); ¹³C {¹H} NMR (100 MHz, CDCl₃) 191.8 (CHO), 157.1 (*C*(2)), 134.9 (*C*(4)), 129.3 (*C*(6)), 128.8 (*C*(1)), 122.1 (*C*(5)), 119.1 (*M*⁺, 100%); HRMS (EI⁺) m/z: [M]+ Calcd for C₁₂H₁₅NO 189.1154; Found 189.1155. Experimental data is in agreement with reported values.⁵³

2-(Pyrrolidin-1-yl)benzaldehyde (6b)

7

General procedure A (5 h) from 2-fluorobenzaldehyde (270 µL, 2 2.60 mmol), pyrrolidine (260 µL, 3.13 mmol) and potassium 3 carbonate (432 mg, 3.13 mmol) to give 6b (441 mg, 2.52 mmol, 4 97%) as a yellow oil. R_f (5% EtOAc in petrol) 0.69; v_{max} /cm⁻¹ 1677, 5 1560, 1491, 1478; ¹H NMR (400 MHz, CDCl₃) 10.09 (1H, s, CHO), 7.70 (1H, dd, J 7.8, 1.8, C(6)H), 7.38 (1H, ddd, J 8.7, 7.0, 6 1.8, C(4)H), 6.87 - 6.76 (2H, m, C(3)H + C(5)H), 3.40 - 3.32 (4H, m)tm, C(2') H_2), 2.03 – 1.95 (4H, m, C(3') H_2); ¹³C{¹H} NMR (100 8 MHz, CDCl₃) 190.2 (CHO), 150.1 (C(2)), 134.3 (C(4)), 133.2 9 (C(6)), 123.1 (C(1)), 116.6 (C(5)), 114.6 (C(3)), 52.8 (C(2')), 26.110 (*C*(3')); *m*/*z* (ESI⁺) 176.1 (MH⁺, 100%); HRMS (ESI⁺) m/*z*: 11 [MH]+ Calcd for C₁₁H₁₄NO 176.1070; Found 176.1069. 12 Experimental data is in agreement with reported values.53

13 2-Morpholinobenzaldehyde (6c) 14

15 General procedure A (5 h) from 2-fluorobenzaldehyde (225 µL, 16 2.02 mmol), morpholine (210 µL, 2.42 mmol) and potassium 17 carbonate (334 mg, 2.42 mmol) to give 6c (268 mg, 1.40 mmol, 70%) as a yellow oil. R_f (20% EtOAc in petrol) 0.42; v_{max}/cm^{-1} 18 1683, 1596; ¹H NMR (400 MHz, CDCl₃) 10.33 (1H, s, CHO), 7.81 19 (1H, dd, J 7.7, 1.7, C(6)H), 7.54 (1H, ddd, J 8.1, 7.3, 1.7, C(4)H), 20 7.17 - 7.12 (1H, m, C(5)H), 7.11 (1H, d, J 8.2, C(3)H), 3.99 - 3.86 21 $(4H, m, C(3')H), 3.16 - 3.00 (4H, m, C(2')H_2); {}^{13}C{}^{1}H$ 22 NMR (100 MHz, CDCl₃) 191.3 (CHO), 155.4 (C(2)), 135.2 23 (C(4)), 130.4 (C(6)), 128.8 (C(1)), 123.0 (C(5)), 119.0 (C(3)), 67.0 24 (C(3')), 54.3 (C(2')); HRMS (EI⁺) m/z: [MH]+ Calcd for 25 C₁₁H₁₃NO₂ 191.0946; Found 191.0944. Experimental data is in 26 agreement with reported values.53

27 2-(cis-2,6-Dimethylmorpholino)benzaldehyde (6d) 28

29 General procedure A (5 h) from 2-fluorobenzaldehyde (170 µL, 30 1.61 mmol), 2-(cis-2,6-dimethyl)morpholine (230 µL, 1.88 mmol) and potassium carbonate (263 mg, 1.88 mmol) to give 6d (291 mg, 31 1.33 mmol, 82%) as an orange solid. m.p. 106 – 108 °C; R_f (10% 32 EtOAc in petrol) 0.45; v_{max}/cm⁻¹ 1727, 1597, 1453; ¹H NMR (400 33 MHz, CDCl₃) 10.31 (1H, d, J 0.7 CHO), 7.80 (1H, dd, J 7.7, 1.7, 34 C(4)H), 7.52 (1H, ddd, J 8.2, 7.3, 1.8, C(6)H), 7.12 (1H, tt, J 7.4, 35 0.8, C(5)*H*), 7.08 (1H, dd, *J* 8.2, 0.6, C(3)*H*), 3.91 (2H, dqd, *J* 10.0, 36 6.3, 2.1, C(3')H, 3.10 - 3.03 (2H, m, $C(2')H_AH_B$), 2.64 (2H, dd, 37 $J 11.9, 10.1, C(2')H_AH_B$, 1.22 (6H, d, $J 6.3, C(3')CH_3$); ¹³C{¹H} 38 NMR (100 MHz, CDCl₃) 191.4 (CHO), 155.2 (C(2)), 135.2 39 (C(6)), 130.3 (C(4)), 128.8 (C(1)), 122.9 (C(5)), 119.1 (C(3)), 71.9 40 (C(3')), 59.8 (C(2')), 19.0 (C(3')CH₃); m/z (ESI⁺) 220.1 (MH⁺, 100%); HRMS (ESI-TOF) m/z: [MH]+ Calcd for C₁₃H₁₈NO₂ 41 220.1332; Found 220.1329. Experimental data is in agreement 42 with reported values.54 43

44 2-(cis-2,6-Dimethylmorpholino)-5-nitrobenzaldehyde (6e)

45 General procedure A (6 h) from 2-fluoro-5-nitrobenzaldehyde 46 (1.50 g, 8.87 mmol), 2-(cis-2,6-dimethyl)morpholine (1.32 mL, 47 10.6 mmol) and potassium carbonate (1.47 g, 10.6 mmol) to give 48 **6e** (1.91 g, 7.23 mmol, 82%) as a yellow solid. m.p. 120 – 121 °C; 49 $R_f(50\% \text{ EtOAc in petrol}) 0.68; v_{max}/cm^{-1} 2871, 1687, 1508, 1335;$ 50 ¹H NMR (400 MHz, CDCl₃) 10.06 (1H, s, CHO), 8.61 (1H, d, J 51 2.8, C(6)H), 8.29 (1H, dd, J 9.1, 2.8, C(4)H), 7.06 (1H, d, J 9.1, 52 C(3)H), 3.91 (2H, dqd, J 10.2, 6.2, 2.1, C(3')H), 3.40 – 3.22 (2H, m, C(2')*H*_AH_B), 2.82 (2H, dd, *J* 12.4, 10.2, C(2')H_AH_B), 1.24 (6H, 53 d, J 6.3, C(3')CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃) 188.4 54 (CHO), 157.5 (C(2)), 141.1 (C(5)), 129.6 (C(4)), 129.1 (C(6)), 55 126.0 (C(1)), 118.4 (C(3)), 71.7 (C(3')), 58.6 (C(2')), 18.8 56 ((C(3')CH₃); *m/z* (ESI⁺) 265.1 (MH⁺, 28%); HRMS (ESI⁺) m/z: 57 [MH]+ Calcd for C₁₃H₁₆N₂O₄ 265.1183; Found 265.1183. 58 Experimental data is in agreement with reported values.²⁰ 59

2-(cis-2,6-Dimethylmorpholino)-5-methoxybenzaldehyde (6f) 60

General procedure A (8 h) from 2-fluoro-5-methoxybenzaldehyde (1.03 mL, 8.30 mmol), 2-(cis-2,6-dimethyl)morpholine (880 µL, 9.73 mmol) and potassium carbonate (1.35 g, 9.73 mmol) to give 6f (408 mg, 1.64 mmol, 20%) as a yellow oil. R_f (50% EtOAc in petrol) 0.50; v_{max}/cm⁻¹ 2868, 1684; ¹H NMR (400 MHz, CDCl₃) 10.42 (1H, s, CHO), 7.33 – 7.31 (1H, m, C(6)H), 7.15 – 7.08 (2H, m, C(3)H + C(4)H, 3.89 (2H, dqd, J 12.5, 6.2, 1.9, C(3')H), 3.82 (3H, s, OCH₃), 2.95 (2H, d, J10.9, C(2')H_AH_B), 2.61 (2H, t, J10.8, $C(2')H_AH_B$, 1.21 (6H, d, J 6.3, $C(3')CH_3$); ¹³ $C\{^{1}H\}$ NMR (100 MHz, CDCl₃) 191.6 (CHO), 156.0 (C(5)), 149.8 (C(2)), 130.2 (C(1)), 122.8 (C(4)), 121.4 (C(3)), 111.3 (C(6)), 72.0 (C(3')), 60.4 (C(2')), 55.8 (OCH₃), 19.0 (C(3')CH₃); m/z (ESI⁺) 250.1 (MH⁺, 88%); HRMS (ESI⁺) m/z: [MH]+ Calcd for C₁₄H₂₀NO₃ 250.1438; Found 250.1438.

Methyl (3'R,4aR,5S,7a'R)-3'-(tert-butyl)-5',7'-dioxo-2,3,4,4atetrahydro-1H,1'H,3'H,5'H,6H-spiro[pyrido[1,2-a]quinoline-5,6'-pyrrolo[1,2-c]oxazole]-7a'(7'H)-carboxylate (major isomer of 8a)

General procedure B (6 h) from tetramate 5a (500 mg, 1.96 mmol) and o-aminobenzaldehyde 6a (408 mg, 2.15 mmol) to give spirocycle 8a (309 mg, 0.724 mmol, 37%) as a red solid. m.p. 185 °C; R_f (25% EtOAc in petrol) 0.66; v_{max}/cm⁻¹ 1774, 1746, 1720, 1497, 1458, 1497, 1267; ¹H NMR (600 MHz, C₆D₆) 7.09 (1H, t, J 7.6, C(11')H), 6.82 (1H, d, J 7.4, C(9')H), 6.72 (1H, d, J 8.4, C(12')H), 6.67 (1H, t, J 7.3, C(10')H), 5.11 (1H, s, C(3)H), 4.75 (1H, d, J 8.9, C(1)H_AH_B), 3.76 – 3.70 (1H, m, C(1')H_AH_B), 3.41 – 3.36 (2H, m, C(7') H_AH_B + C(5')H), 3.26 (1H, d, J 15.8, C(7')H_AH_B), 3.20 (1H, d, J 8.8, C(1)H_AH_B), 3.12 (3H, s, CO₂CH₃), 2.42 (1H, td, J 12.3, 4.4, C(1') H_AH_B), 1.50 – 1.44 (2H, m, $C(3')H_AH_B + C(4')H_AH_B$, 1.32 – 1.27 (2H, m, C(2')H_AH_B), 1.12 -1.06 (1H, m, C(3') H_AH_B), 1.04 (9H, s, C(CH₃)₃), 1.00 - 0.96 $(1H, m, C(4')H_AH_B)$; ${}^{13}C{}^{1}H} NMR (100 MHz, C_6D_6) 199.6$ (C(7)), 178.6 (C(5)), 167.6 (CO₂CH₃), 146.2 (C(13')), 129.4 (C(9')), 127.9 (C(11')), 118.2 (C(8')), 118.0 (C(10')), 113.9(C(12')), 99.2 (C(3)), 78.5 (C(7a)), 68.2 (C(1)), 59.0 (C(5')), 57.7 (*C*(6)), 52.9 (CO₂*C*H₃), 48.7 (*C*(1')), 36.9 (*C*(7')), 35.7 (*C*(CH₃)₃), 29.3 (*C*(4')), 25.6 (*C*(2')), 25.0 (*C*(CH₃)₃), 24.5 (*C*(3')); *m/z* (ESI⁺) 427.2 (MH⁺, 100%); HRMS (ESI⁺) m/z: [MH]⁺ Calcd for C₂₄H₃₁N₂O₅ 427.2228; Found 427.2212. Single Crystal Data: C₂₄H₃₀N₂O₅, tetragonal, I4₁, a=16.4812(2), c=16.0775(3) Å, V= 4367.13(11) Å³, Data/restraints/parameters 4521/1/281, R_{int}=0.029, Flack x=0.00(11), Final R₁=0.0272, wR₂=0.0689 (I > 2s(I)).

Methyl (3aR,3'R,4S,7a'R)-3'-(tert-butyl)-5',7'-dioxo-1,2,3,3atetrahydro-1'H,3'H,5H,5'H-spiro[pyrrolo[1,2-a]quinoline-4,6'-pyrrolo[1,2-c]oxazole]-7a'(7'H)-carboxylate (major isomer of 8b)

General procedure B (6 h) from tetramate 5a (500 mg, 1.96 mmol) and o-aminobenzaldehyde 6b (420 mg, 2.15 mmol) to give spirocycle 8b (474 mg, 1.15 mmol, 58%) as an orange solid. m.p. 188 °C; R_f (25% EtOAc in petrol) 0.70; v_{max}/cm⁻¹ 1745, 1717; ¹H NMR (600 MHz, C₆D₆) 7.20 (1H, t, J 7.6, C(11')H), 6.93 (1H, d, J 7.4, C(9')H), 6.69 (1H, t, J 7.4, C(10')H), 6.49 (1H, d, J 8.0, C(12')H), 5.15 (1H, s, C(3)H), 4.76 (1H, d, J8.9, C(1)H_AH_B), 3.82 (1H, dd, J10.2, 5.6, C(5')H), 3.47 (1H, d, J15.9, C(7')H_AH_B), 3.23 (1H, d, J 15.9, C(7')H_AH_B), 3.17 (1H, d, J 8.9, C(1)H_AH_B), 3.12 -3.09 (1H, m, C(1') H_AH_B), 3.09 (3H, s, CO₂CH₃), 2.94 (1H, td, J 9.3, 7.0, C(1')H_AH_B), 1.71 (1H, dtd, J 11.4, 6.2, 1.7, C(4')H_AH_B), 1.48 - 1.37 (2H, m, C(2') $H_A H_B$), 1.04 (9H, s, C(CH₃)₃), 0.97 - 0.88 (1H, m, C(4')H_A H_B); ¹³C{¹H} NMR (100 MHz, C₆D₆) 199.3 (C(7)), 178.5 (C(5)), 167.1 (CO₂CH₃), 143.9 (C(13')), 128.6 (C(9')), 128.2 (C(11')), 115.9 (C(10')), 115.3 (C(8')), 110.9(C(12')), 98.7 (C(3)), 78.1 (C(7a)), 67.8 (C(1)), 60.1 (C(5')), 52.6 (CO₂CH₃), 52.4 (C(6)), 47.3 (C(1')), 37.7 (C(7')), 35.3 (C(CH₃)₃),

28.6 (*C*(4')), 24.6 (*C*(*C*H₃)₃), 23.5 (*C*(2')); *m/z* (ESI⁺) 413.2 (MH⁺, 100%); HRMS (ESI⁺) m/z: [MH]⁺ Calcd for $C_{23}H_{29}N_2O_5$ 413.2071; Found 413.2065. Single Crystal Data: $C_{23}H_{28}N_2O_5$, tetragonal, I4₁, *a*=16.4674(2), *c*=15.6590(4) Å, *V*=4246.33(13) Å³, Data/restraints/parameters 4405/1/272, R_{int}=0.030, Flack *x*=0.07(12), Final R₁=0.0277, wR₂=0.0706 (I>2s(I)).

1

2

3

4

5

6

7

Methyl (3*R*,4a'*S*,6*S*,7a*R*)-3-(*tert*-butyl)-5,7-dioxo-1',2',4',4a' tetrahydro-1*H*,3*H*,5*H*,6'*H*-spiro[pyrrolo[1,2-c]oxazole-6,5' [1,4]oxazino[4,3-a]quinoline]-7a(7*H*)-carboxylate (major isomer of 8c)

```
12
         General procedure B (12 h) from tetramate 5a (500 mg, 1.96
13
         mmol) and o-aminobenzaldehyde 6c (440 mg, 2.15 mmol) to give
14
         spirocycle 8c (53 mg, 0.12 mmol, 7%) as a red solid. m.p. 172 -
15
         175 °C; R<sub>f</sub> (25% EtOAc in petrol) 0.46; v<sub>max</sub>/cm<sup>-1</sup> 1773, 1747,
         1718; <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>) 7.09 (1H, t, J 7.8, C(11')H), 6.80
16
         (1H, d, J 7.4, C(9')H), 6.70 (1H, t, J 7.0, C(10')H), 6.57 (1H, d, J
17
         8.3, C(12')H), 4.95 (1H, s, C(3)H), 4.68 (1H, d, J 9.0, C(1)H<sub>A</sub>H<sub>B</sub>),
18
         3.82 (1H, dd, J 10.1, 2.9, C(4')H<sub>A</sub>H<sub>B</sub>), 3.63 (1H, dd, J 10.2, 3.0,
19
         C(5')H, 3.58 – 3.54 (1H, m, C(2')H_AH_B), 3.37 (1H, d, J 16.2,
20
         C(7')H<sub>A</sub>H<sub>B</sub>), 3.34 (1H, td, J 11.5, 3.0, C(2')H<sub>A</sub>H<sub>B</sub>), 3.22 (1H, d, J
21
         16.2, C(7')H_A H_B, 3.21 – 3.17 (1H, m, C(1')H_A H_B), 3.08 (3H, s,
22
         CO_2CH_3, 3.09 – 3.04 (2H, m, C(1)H<sub>A</sub>H<sub>B</sub> + C(4')H<sub>A</sub>H<sub>B</sub>), 2.60 (1H,
23
         td, J 11.9, 3.7, C(1')H<sub>A</sub>H<sub>B</sub>), 1.00 (9H, s, C(CH<sub>3</sub>)<sub>3</sub>); <sup>13</sup>C{<sup>1</sup>H} NMR
24
         (125 MHz, C<sub>6</sub>D<sub>6</sub>) 199.6 (C(7)), 177.8 (C(5)), 167.5 (CO<sub>2</sub>CH<sub>3</sub>),
25
         145.2 (C(13')), 129.6 (C(9')), 128.4 (C(11')), 118.8 (C(10')),
         118.2 (C(8')), 113.1 (C(12')), 99.1 (C(3)), 78.6 (C(7a)), 68.4
26
         (C(1)), 68.0 (C(4')), 66.9 (C(2')), 57.5 (C(5')), 53.8 (C(6)), 53.0
27
         (CO_2CH_3), 46.4 (C(1')), 36.5 (C(7')), 35.6 (C(CH_3)_3), 25.0
28
         (C(CH<sub>3</sub>)<sub>3</sub>); m/z (ESI<sup>+</sup>) 429.2 (MH<sup>+</sup>, 100%); HRMS (ESI<sup>+</sup>) m/z:
29
         [MH]+ Calcd for C<sub>23</sub>H<sub>29</sub>N<sub>2</sub>O<sub>6</sub> 429.2020; Found 429.2017. Single
30
         Crystal Data: C_{23}H_{28}N_2O_6, tetragonal, I4_1, a=16.3993(2),
31
         c=15.9819(3) Å, V=4298.12(13) Å<sup>3</sup>, Data/restraints/parameters
32
         4195/1/281, R<sub>int</sub>=0.017, Flack x=0.01(13), Final R<sub>1</sub>=0.0287,
33
         wR<sub>2</sub>=0.0806 (I>2s(I)).55
```

Methyl (2'S,3R,4'R,4a'R,6R,7aR)-3-(*tert*-butyl)-2',4'-dimethyl 5,7-dioxo-1',2',4',4a'-tetrahydro-1H,3H,5H,6'H spiro[pyrrolo]1,2-c]oxazole-6,5'-[1,4]oxazino[4,3-

```
a [quinoline]-7a(7H)-carboxylate (major isomer of 8d)
```

38 General procedure B (8 h) from tetramate 5a (2.25 g, 8.82 mmol) 39 and o-aminobenzaldehyde 6d (2.13 g, 9.70 mmol) to give 40 spirocycle 8d (1.24 g, 2.72 mmol, 31%) as a pink solid. m.p. 190 41 °C; R_f (50% EtOAc in petrol) 0.88; v_{max}/cm⁻¹ 1773, 1745, 1721; ¹H 42 NMR (600 MHz, C₆D₆, 8:2 mixture of diastereomers) major 43 isomer 8d"" 7.15 – 7.11 (1H, m, C(11')H), 6.80 (1H, d, J7.4, 1.8, 44 C(9')H), 6.76 (1H, td, J 7.2, 0.9, C(10')H), 6.61 (1H, d, J 8.4, 45 C(12')*H*), 5.05 (1H, s, C(3)*H*), 4.65 (1H, d, *J* 8.9, C(1)*H*_AH_B), 3.72 46 (1H, dq, J 9.5, 6.0, C(4')H), 3.48 (1H, dqd, J 12.4, 6.1, 2.7, 47 C(2')*H*), 3.42 (1H, dd, *J* 12.0, 2.7, C(1')*H*_AH_B), 3.31 (1H, d, *J* 16.5, C(7')*H*_AH_B), 3.30 (1H, d, *J* 9.5, C(5')*H*), 3.18 (3H, s, CO₂CH₃), 48 3.02 (1H, d, J 8.9, C(1)H_AH_B), 2.40 (1H, t, J 11.2, C(1')H_AH_B), 49 2.38 (1H, d, J 16.8, C(7') H_AH_B), 1.69 (3H, d, J 6.0, C(4')CH₃), 50 1.01 (9H, s, C(CH₃)₃), 0.99 (3H, d, J 6.2, C(2')CH₃); ${}^{13}C{}^{1}H{}$ 51 NMR (125 MHz, C₆D₆) major isomer 8d"" 198.9 (C(7)), 179.4 52 (C(5)), 167.7 (CO₂CH₃), 145.3 (C(13')), 129.0 (C(9')), 128.4 53 (C(11')), 118.2 (C(10')), 118.0 (C(8')), 113.1 (C(12')), 100.3 54 (C(3)), 78.7 (C(7a)), 73.6 (C(4')), 70.9 (C(2')), 70.1 (C(1)), 63.7 55 $(C(5')), 58.0 (C(6)), 52.8 (C(1')), 52.7 (CO_2CH_3), 37.6 (C(7')),$ 56 35.7 (C(CH₃)₃), 25.2 (C(CH₃)₃), 20.3 (C(4')CH₃), 19.0 57 (C(2')CH₃); *m/z* (ESI⁺) 457.2 (MH⁺, 100%); HRMS (ESI⁺) m/z: [MH]+ Calcd for C₂₅H₃₃N₂O₆ 457.2333; Found 457.2324. Single 58 Crystal Data: C₂₅H₃₂N₂O₆, orthorhombic, P2₁2₁2₁, *a*=9.0534(1), 59 *c*=22.0969(3) Å, V=2394.64(6) Å³, b=11.9701(2),60

Data/restraints/parameters 4966/0/299, $R_{int}=0.039$, Flack x=-0.07(12), Final R₁=0.0313, wR₂=0.0805 (I>2s(I)).

Methyl (2'S,3*R*,4'*R*,4a'*R*,6*R*,7a*R*)-3-(*tert*-butyl)-2',4'-dimethyl-5,7-dioxo-1',2',4',4a'-tetrahydro-1*H*,3*H*,5*H*,6'*H*spiro[pyrrolo[1,2-*c*]thiazole-6,5'-[1,4]oxazino[4,3*a*]quinoline]-7a(7*H*)-carboxylate (major isomer of 8e)

General procedure B (8 h) from tetramate **5b** (250 mg, 0.92 mmol) and o-aminobenzaldehyde 6d (222 mg, 1.02 mmol) to give spirocycle 8e (111 mg, 0.235 mmol, 23%) as an orange solid. m.p. 195 – 197 °C; R_f (50% EtOAc in petrol) 0.76; v_{max}/cm⁻¹ 1773, 1746, 1715; ¹H NMR (500 MHz, C₆D₆, 8:2 mixture of diastereomers) major isomer 8e"" 7.14 – 7.10 (1H, m, C(11')H), 6.72 (1H, td, J7.3, 0.9, C(10')H), 6.68 (1H, d, J7.3, C(9')H), 6.59 (1H, d, J 8.4, C(12')H), 5.46 (1H, s, C(3)H), 3.69 - 3.63 (1H, m, C(4')H, 3.63 (1H, d, J 11.4, $C(1)H_AH_B$), 3.53 – 3.47 (1H, m, C(2')H), 3.44 (1H, dd, J 12.1, 12.7, C(1')H_AH_B), 3.35 (1H, d, J 9.4, C(5')*H*), 3.30 (1H, d, *J* 16.4, C(7')*H*_AH_B), 3.18 (3H, s, OCH₃), 2.51 (1H, d, J 11.5, C(1)H_AH_B), 2.42 (1H, dd, J 12.1, 10.5, $C(1')H_AH_B$, 2.33 (1H, d, J 16.4, $C(7')H_AH_B$), 1.68 (3H, d, J 6.0, $C(4')CH_3$, 0.98 (9H, s, $C(CH_3)_3$), 1.00 – 0.97 (3H, m, $C(2')CH_3$); $^{13}C{^{1}H}$ NMR (125 MHz, C_6D_6) major isomer **8e**^{****} 198.5 (*C*(7)), 179.1 (C(5)), 167.4 (CO₂CH₃), 145.0 (C(13')), 129.1 (C(9')), 128.5 (C(11')), 118.3 (C(10')), 118.1 (C(8')), 113.3 (C(12')), 82.9 (C(7a)), 76.2 (C(3)), 73.8 (C(4')), 71.2 (C(2')), 63.7 (C(5')), 53.2 (C(1')), 53.0 (CO₂CH₃), 51.9 (C(6)), 39.1 (C(7')), 37.4 (C(CH₃)₃), 36.3 (C(1)), 27.1 (C(CH₃)₃), 20.4 (C(4')CH₃), 19.1 (C(2')CH₃); m/z (ESI⁺) 473.2 (MH⁺, 100%); HRMS (ESI⁺) m/z: [MH]+ Calcd for C₂₅H₃₃N₂O₅S 473.2105; Found 473.2098. Single Crystal Data: $P2_12_12_1$, $C_{25}H_{32}N_2O_6S_1$, orthorhombic, a=9.2640(2),b=12.1677(3),c=21.5109(6) Å, 2424.74(10) Å³, V =5020/0/299. $R_{int}=0.019$, Flack Data/restraints/parameters x=-0.015(14), Final R₁=0.0320, wR₂=0.0879 (I>2s(I)).

Methyl (2'S,3R,4'R,4a'R,6R,7aR)-3-(*tert*-butyl)-2',4'-dimethyl-8'-nitro-5,7-dioxo-1',2',4',4a'-tetrahydro-1*H*,3*H*,5*H*,6'*H*spiro[pyrrolo[1,2-c]oxazole-6,5'-[1,4]oxazino[4,3*a*]quinoline]-7a(7*H*)-carboxylate (8f)

General procedure B (15 h) from tetramate 5a (70 mg, 0.28 mmol) and o-aminobenzaldehyde 6e (86 mg, 0.33 mmol) to give spirocycle 8f (4 mg, 0.008 mmol, 3%) as an orange solid. m.p. 235 - 240 °C; R_f (25% EtOAc in petrol) 0.24; v_{max}/cm⁻¹ 1745, 1674 and 1607; ¹H NMR (500 MHz, C₆D₆, 9:1 mixture of diastereomers) major isomer 8f"" 8.02 (1H, dd, J 9.3, 2.7, C(11')*H*), 7.74 (1H, d, *J* 2.7, C(9')*H*), 6.04 (1H, d, *J* 9.3, C(12')*H*), 5.04 (1H, s, C(3)H), 4.61 (1H, d, J 8.9, C(1)H_AH_B), 3.56 (1H, dq, J 9.6, 5.9, C(4')H), 3.25 - 3.19 (1H, m, C(2')H), 3.16 (3H, s, CO₂CH₃), 3.18 – 3.14 (1H, m, C(5')H), 3.09 (1H, dd, J 12.5, 2.7, C(1')*H*_AH_B), 2.96 (1H, d, J 9.0, C(1)H_AH_B), 2.86 (1H, d, *J* 16.5, C(7')*H*_AH_B), 2.21 (1H, dd, *J* 12.5, 10.8, C(1')H_AH_B), 2.02 (1H, d, $J 16.7, C(7')H_AH_B$, 1.61 (3H, d, $J 6.0, C(4')CH_3$), 0.99 (9H, s, $C(CH_3)_3$, 0.91 (3H, d, J 6.2, $C(2')CH_3$); ¹³C{¹H} NMR (125 MHz, C₆D₆) major isomer **8f**"" 198.9 (C(7)), 178.0 (C(5)), 167.3 (CO₂CH₃), 149.3 (C(13')), 138.7 (C(10')), 124.8 (C(9')), 124.4 (C(11')), 117.3 (C(8')), 111.3 (C(12')), 100.2 (C(3)), 78.4 (C(7a)), 73.0 (C(4')), 70.3 (C(2')), 69.8 (C(1)), 62.9 (C(5')), 52.7 (CO₂CH₃), 51.8 (C(1')), 51.8 (C(6)), 36.5 (C(7')), 35.5 (C(CH₃)₃), 24.9 (C(CH₃)₃), 20.0 (C(4')CH₃), 18.6 (C(2')CH₃); m/z (ESI⁺) 502.3 (MH⁺, 73%); HRMS (ESI⁺) m/z: [MH]+ Calcd for C₂₅H₃₂N₃O₈ 502.2184; Found 502.2186.

Methyl (2'*S*,3*R*,4'*R*,4a'*R*,6*R*,7a*R*)-3-(*tert*-butyl)-2',4'-dimethyl-8'-nitro-5,7-dioxo-1',2',4',4a'-tetrahydro-1*H*,3*H*,5*H*,6'*H*spiro[pyrrolo[1,2-c]thiazole-6,5'-[1,4]oxazino[4,3*a*]quinoline]-7a(7*H*)-carboxylate (8g) 1 General procedure B (8 h) from tetramate **5b** (75 mg, 0.28 mmol) 2 and o-aminobenzaldehyde 6e (88 mg, 0.33 mmol) to give 3 spirocycle 8g (13 mg, 0.024 mmol, 9%) as an orange solid. m.p. 236 – 238 °C; R_f (25% EtOAc in petrol) 0.41; v_{max} /cm⁻¹ 1744, 4 1718, 1685, 1316; ¹H NMR (500 MHz, C₆D₆, 8:1 mixture of 5 diastereomers) major isomer 8g"" 8.01 (1H, dd, J 9.3, 2.8, 6 C(11')H), 7.63 (1H, d, J2.7, C(9')H), 6.03 (1H, d, J9.3, C(12')H), 7 5.41 (1H, s, C(3)H), 3.55 (1H, d, J 11.6, C(1)H_AH_B), 3.53 – 3.48 8 (1H, m, C(4')H), 3.21 (1H, d, J 9.6, C(5')H), 3.24 – 3.19 (1H, m, 9 C(2')H, 3.16 (3H, s, CO_2CH_3), 3.15 – 3.09 (1H, m, $C(1')H_AH_B$), 10 2.85 (1H, d, J 16.4, C(7')H_AH_B), 2.39 (1H, d, J 11.5, C(1)H_AH_B), 11 2.21 (1H, dd. J 12.6, 10.7, C(1')H_AH_B), 1.96 (1H, d, J 16.5, 12 C(7')H_A*H_B*), 1.60 (3H, d, *J* 6.0, C(4')C*H*₃), 0.97 (9H, s, C(C*H*₃)₃), 13 0.91 (3H, d, J 6.2, C(2')CH₃); ${}^{13}C{}^{1}H{}$ NMR (125 MHz, C₆D₆) major isomer **8g**^{***} 200.1 (C(7)), 176.3 (C(5)), 167.8 (CO_2CH_3), 14 15 149.7 (C(13')), 139.0 (C(10')), 125.2 (C(9')), 124.9 (C(11')), 117.6 (C(8')), 111.6 (C(12')), 82.7 (C(7a)), 76.1 (C(3)), 73.4 16 $(C(4')), 70.7 (C(2')), 63.2 (C(5')), 53.1 (CO_2CH_3), 52.3 (C(1')),$ 17 51.1 (C(6)), 38.0 (C(7')), 37.4 (C(CH₃)₃), 36.2 (C(1)), 27.0 18 (C(CH₃)₃), 20.3 (C(4')CH₃), 18.9 (C(2')CH₃); HRMS (APCI⁺) 19 m/z: [MH]+ Calcd for C₂₅H₃₂N₃O₇S 518.1956; Found 518.1959. 20

21 Methyl (3'R,7a'R)-7-bromo-3'-(*tert*-butyl)-5',7'-dioxo-1,2,3,3a 22 tetrahydro-1'H,3'H,5H,5'H-spiro[pyrrolo[1,2-a]quinoline 23 4,6'-pyrrolo[1,2-c]oxazole]-7a'(7'H)-carboxylate (8i)

24 General procedure B (6 h) from tetramate 5a (100 mg, 0.392 25 mmol) and o-aminobenzaldehyde 23 (110 mg, 0.431 mmol) to give spirocycle 8i (119 mg, 0.243 mmol, 9%) as a brown solid. R_f 26 (25% EtOAc in petrol) 0.81; v_{max}/cm⁻¹ 1742, 1718, 1112; ¹H NMR 27 (500 MHz, C₆D₆, 2.5:1.5:1:1 mixture of 4 diastereomers) major 28 isomer 7.26 (1H, dd, J 8.6, 2.7, C(11')H), 7.08 (1H, d, J 2.3, 29 C(9')H), 6.12 (1H, d, J 8.6, C(12')H), 5.11 (1H, s, C(3)H), 4.74 30 (1H, d, J 8.9, C(1)H_AH_B), 3.67 (1H, dd, J 10.3, 5.6, C(5')H), 3.28 31 (1H, d, J 16.1, C(7')H_AH_B), 3.14 (1H, d, J 8.9, C(1)H_AH_B), 3.05 32 (1H, d, J 16.3, C(7')H_AH_B), 3.04 (3H, s, CO₂CH₃), 2.91 (1H, ddd, 33 J 8.2, 5.1, 2.9, C(1') H_AH_B), 2.82 – 2.74 (1H, m, C(1') H_AH_B), 1.69 34 -1.60 (1H, m, C(4') H_AH_B), 1.49 (1H, m, C(2') H_AH_B), 1.43 -1.3835 $(1H, m, C(2')H_AH_B)$, 1.01 (9H, s, $C(CH_3)_3$), 0.87 – 0.81 (1H, m, $C(4')H_AH_B$; ¹³ $C\{^{1}H\}$ NMR (125 MHz, C_6D_6) major isomer 199.8 36 (C(7)), 178.4 (C(5)), 167.2 (CO₂CH₃), 143.1 (C(13')), 131.3 37 (C(9')), 131.2 (C(11')), 117.9 (C(8')), 112.8 (C(12')), 107.8 38 (C(10')), 99.0 (C(3)), 78.4 (C(7a)), 68.0 (C(1)), 60.4 (C(5')), 53.1 39 (CO₂CH₃), 52.3 (C(6)), 47.6 (C(1')), 37.3 (C(7')), 35.7 (C(CH₃)₃), 40 28.9 (C(4')), 25.0 (C(CH₃)₃), 23.8 (C(2')); m/z (ESI⁺) 491.2 (MH⁺, 41 100%); HRMS (ESI⁺) m/z: [MH]+ Calcd for C₂₃H₂₈BrN₂O₅ 42 491.1176; Found 491.1174. 43

44 Methyl (3'R,7a'R)-3'-(tert-butyl)-5',7'-dioxo-7-phenyl-1,2,3,3a-tetrahydro-1'H,3'H,5H,5'H-spiro[pyrrolo[1,2a]quinoline-4,6'-pyrrolo[1,2-c]oxazole]-7a'(7'H)-carboxylate (8j)

Bromospirocycle 8i (100 mg, 0.20 mmol) and phenylboronic acid 48 (37 mg, 0.30 mmol) were dissolved into THF (5 mL). To the 49 stirring solution was added Pd(dppf)Cl₂ (195 mg in 0.2 mL H₂O, 50 0.01 mmol, 5 mol%). The mixture was stirred at room temperature 51 for 40 minutes and then heated to reflux for 24 h. The reaction 52 mixture was then diluted with EtOAc and filtered through a pad of 53 Celite. The filtrates were collected and washed with brine and a 54 saturated solution of NaHCO₃. Solvent was removed using rotary 55 evaporation and the resulting residue was purified by *flash* column 56 chromatography to yield the biaryl 8j (38 mg, 0.078 mmol, 39%) as a mixture of 4 diastereomers as a yellow oil. Rf (25% EtOAc in 57 petrol) 0.91; v_{max}/cm⁻¹ 1745, 1711, 1605, 1507, 1480, 1461, 1577; 58 m/z (ESI⁺) 489.2 (MH⁺, 100%); HRMS (ESI⁺) m/z: [MH]+ Calcd 59 for C₂₉H₃₃N₂O₅ 489. 2384; Found 489.2382. 60

Methyl (3*R*,7a*R*)-6-benzylidene-3-(*tert*-butyl)-5,7dioxodihydro-1*H*,3*H*-pyrrolo[1,2-*c*]oxazole-7a(5*H*)carboxylate (10)

Tetramare 5a (100 mg, 0.392 mmol) was added to a solution of benzaldehyde (440 µL, 0.429 mmol) in methanol (2.0 mL). The solution was then stirred at room temperature for 30 hours, and then concentrated in vacuo. Purification via flash column chromatography gave alkene 10 (47 mg, 0.14 mmol, 36%, 1.2:1 mixture of E/Z isomers) as a yellow oil. R_f (EtOAc) 0.41; v_{max} /cm⁻¹ 1700, 1622, 1475; ¹H NMR (500 MHz, CDCl₃) E isomer: 8.35 -8.32 (2H, m, C(3')H), 7.92 (1H, s, C(1')H), 7.63 - 7.56 (1H, m, C(5')H), 7.53 – 7.48 (2H, m, C(4')H), 5.07 (1H, s, C(3)H), 4.90 (1H, d, J 9.0, C(1)H_AH_B), 3.78 (3H, s, CO₂CH₃), 3.57 (1H, d, J 9.0, C(1)H_AH_B), 0.97 (9H, s, C(CH₃)₃); Z isomer: 8.45 – 8.41 (2H, m, C(3')H), 7.82 (1H, s, C(1')H), 7.63 – 7.56 (1H, m, C(5')H), 7.53 - 7.48 (2H, m, C(4')H), 5.09 (1H, s, C(3)H), 4.90 (1H, d, J 8.5, C(1)*H*_AH_B), 3.79 (3H, s, CO₂C*H*₃), 3.58 (1H, d, *J* 8.5, C(1)H_AH_B), 0.97 (9H, s, (CH₃)₃); ¹³C{¹H} NMR (125 MHz, CDCl₃) E isomer: 190.0 (C(7)), 172.1 (C(5)), 167.8 (CO₂CH₃), 154.1 (C(1')), 134.9 (C(5')), 134.4 (C(3')), 132.9 (C(2')), 129.1 (C(4')), 123.3 (C(6)),99.3 (C(3)), 77.1 (C(7a)), 68.6 (C(1)), 53.6 (CO₂CH₃), 35.6 (C(CH₃)₃), 24.9 (C(CH₃)₃); Z isomer: 191.5 (C(7)), 170.3 (C(5)), 167.6 (CO₂CH₃), 152.2 (C(1')), 135.4 (C(3')), 134.5 (C(5')), 132.3 (C(2')), 129.1 (C(4')), 123.9 (C(6)), 99.0 (C(3)), 77.8 (C(7a)), 68.3 (*C*(1)), 53.6 (CO₂CH₃), 35.7 (*C*(CH₃)₃), 25.0 (C(CH₃)₃); *m/z* (ESI⁺) 344.1 (MH⁺, 100%); HRMS (ESI⁺) m/z: [MH]+ Calcd for C₁₉H₂₂NO₅ 344.1492; Found 344.1486.

Methyl (3*R*,7a*R*)-3-(*tert*-butyl)-6-(2-(2,6dimethylmorpholino)benzyl)-7-hydroxy-5-oxo-1*H*,3*H*pyrrolo[1,2-*c*]oxazole-7a(5*H*)-carboxylate (14)

Acetic acid (60 µL, 0.99 mmol) and spirotetramate 8d (100 mg, 0.219 mmol) were dissolved in anhydrous DCM (600 µL). NaBH₄ was added portionwise at 0 °C and left to stir for 15 min before stirring at room temperature. After 36 h, the reaction mixture was quenched with saturated aqueous NaHCO₃, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to give 14 (56 mg, 0.12 mmol, 56%) as a pink oil. $R_f(20\%)$ EtOAc in petrol) 0.53; v_{max}/cm⁻¹; 2976, 1746, 1716, 1664; ¹H NMR (500 MHz, C₆D₆) 7.49 (1H, dd, J 7.2, 2.1, C(9')H), 6.98 - 6.88 (2H, m, C(10')*H* + C(11')*H*), 6.63 (1H, dd, *J* 7.6, 1.7, C(12')*H*), 4.92 (1H, d, J 8.3, C(1)H_AH_B), 4.90 (1H, s, C(3)H), 3.82 (1H, dqd, J 10.6, 6.2, 2.0, C(2')H), 3.70 (1H, dqd, J 10.6, 6.2, 2.0, C(2')H), 3.43 (1H, d, J 14.4, C(7')H_AH_B), 3.34 (1H, d, J 14.4, C(7')H_AH_B), 3.30 (3H, s, CO₂CH₃), 3.08 (1H, d, J 8.3, C(1)H_AH_B), 2.58 – 2.55 $(1H, m, C(5')H_AH_B), 2.54 - 2.50 (1H, m, C(1')H_AH_B), 2.15 (1H, m)$ t, J 11.0, C(5') $H_A H_B$), 1.95 (1H, t, J 11.0, C(1') $H_A H_B$), 1.14 (9H, s, C(CH₃)₃), 0.93 (3H, d, J 6.2, C(4')CH₃), 0.87 (3H, d, J 6.3, C(2')CH₃); ¹³C{¹H} NMR (125 MHz, C₆D₆) 178.7 (C(5)), 171.4 (C(7)), 169.5 (CO₂CH₃), 147.3 (C(12')), 134.8 (C(8')),132.7 (C(9')), 128.2 (C(10')), 127.2 (C(11')), 120.2 (C(12')), 107.0 (C(6)), 97.2 (C(3)), 74.2 (C(7a)), 70.6 (C(2')), 70.6 (C(4')), 70.2 (*C*(1)), 60.3 (*C*(1')), 58.8 (*C*(5')), 52.5 (CO₂*C*H₃), 35.6 (*C*(CH₃)₃), 25.2 (C(CH₃)₃), 24.6 (C(7')), 19.2 (C(4')CH₃), 19.1 (C(2')CH₃); *m/z* (ESI⁺) 459.3 (MH⁺, 100%).

(3*S*,7a*R*)-3-(2-Chloro-4-fluorophenyl)dihydro-3*H*,5*H*-pyrrolo[1,2-*c*]thiazole-5,7(6*H*)-dione (17)

To a stirred solution of tetramate **16** (185 mg, 0.52 mmol) in MeCN (5 mL) was added one drop of distilled water, and the reaction mixture was heated to reflux for 6 h. The solvent was removed *in vacuo* to yield tetramate **17** (138 mg, 0.483 mmol, 93%) as a dark orange oil, which was used in the following step without further purification. R_f (20% MeOH in EtOAc) 0.15; $[\alpha]_D^{25}$ -257.0 (*c* 0.25, CHCl₃); v_{max} /cm⁻¹ 2981, 1696, 1649, 1232,

728; ¹H NMR (400 MHz, CDCl₃) 7.29 (1H, dd, J 8.7, 5.8, C(6')H), 7.17 (1H, dd, J 8.2, 2.6, C(3')H), 6.99 (1H, td, J 8.2, 2.6, C(5')H), 6.74 (1H, s, C(3)H), 4.82 - 4.73 (1H, m, C(7a)H), 3.44 (1H, d, J 22.1, C(6) H_AH_B , 3.32 – 3.22 (2H, m, C(1) H_AH_B + C(6) H_AH_B), 3.09 (1H, dd, J = 10.9, 9.6 Hz, C(1)H_AH_B); ¹³C{¹H} NMR (100 MHz, CDCl₃) 202.2 (C(7)), 169.1 (C(5)), 162.3 (d, J 249.7, *C*(4')), 133.6 (d, *J* 4.1, *C*(2')), 126.6 (d, *J* 9.2, *C*(6')), 117.9 (d, *J* 25.1, C(3')), 114.5 (d, J 21.5, C(5')), 100.1 (C(1')), 72.5 (C(7a)), 60.4 (C(3)), 43.5 (C(6)), 33.3 (C(1)); m/z (ESI) 284.0 ([M-H]-, 100%); HRMS (ESI-) m/z: [M-H]- Calcd for C₁₂H₈ClFNO₂S 10 283.9954; Found 283.9954. 11

2-(Diethylamino)benzaldehyde (21a) 12

1

2

3

4

5

6

7

8

9

13 General procedure A (24 h) from 2-fluorobenzaldehyde (300 µL, 14 4.75 mmol), diethylamine (565 µL, 5.46 mmol) and potassium 15 carbonate (755 mg, 5.46 mmol) to give 21a (150 mg, 0.846 mmol, 18%) as a brown oil. R_f (20% hexane in DCM) 0.48; v_{max}/cm^{-1} 16 1683, 1594, 1482, 1450; ¹H NMR (400 MHz, CDCl₃) 10.4 (1H, s, 17 CHO), 7.80 (1H, dd, J 7.7, 1.8, C(6)H), 7.49 (1H, ddd, J 8.2, 7.2, 18 1.8, C(4)H), 7.15 (1H, d, J 8.2, C(3)H), 7.13 - 7.03 (1H, m, 19 C(5)*H*), 3.18 (4H, q, *J* 7.1, C(1')*H*), 1.05 (6H, t, *J* 7.1, C(2')*H*); 20 $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) 192.3 (CHO), 154.7 (C(2)), 21 134.4 (C(4)), 130.9 (C(1)), 129.0 (C(6)), 122.4 (C(5)), 121.8 22 (C(3)), 49.0 (C(1')), 12.4 (C(2')); HRMS (CI⁺) m/z: [MH]+ Calcd 23 for C₁₁H₁₆NO 178.1226; Found 178.1234. Experimental data is in 24 agreement with reported values.56

25 2-(Isopropyl(methyl)amino)benzaldehyde (21b) 26

27 General procedure A (48 h) from 2-fluorobenzaldehyde (300 µL, 28 4.75 mmol), N-isopropyl methylamine (570 µL, 5.46 mmol) and 29 potassium carbonate (755 mg, 5.46 mmol) to give 21b (138 mg, 0.779 mmol, 16%) as a dark orange oil. R_f (20% hexane in DCM) 30 0.51; v_{max}/cm⁻¹ 1684, 1595, 1519, 1454; ¹H NMR (400 MHz, 31 CDCl₃) 10.19 (1H, s, CHO), 7.77 (1H, dd, J7.7, 1.8, C(6)H), 7.45 32 (1H, ddd, J 8.2, 7.2, 1.8, C(4)H), 7.07 (1H, d, J 8.1, C(3)H), 7.00 33 (1H, t, J 7.5, C(5)H), 3.46 (1H, hept, J 6.5, C(2')H), 2.72 (3H, s, 34 $C(1')H_3$, 1.14 (6H, d, J 6.6, $C(3')H_3$); ¹³ $C\{^{1}H\}$ NMR (100 MHz, 35 CDCl₃) 191.6 (CHO), 156.2 (C(2)), 134.4 (C(4)), 129.6 (C(6)), 36 128.9(C(1)), 121.3(C(5)), 120.3(C(3)), 59.1(C(2')), 32.4(C(1'))),37 18.9 (C(3')); HRMS (ESI+) m/z: [MH]+ Calcd for $C_{11}H_{16}NO$ 38 178.1226; Found 178.1226.

39 2-(Benzyl(methyl)amino)benzaldehyde (21e) 40

41 General procedure A (48 h) from 2-fluorobenzaldehyde (1.0 mL, 42 9.5 mmol), N-benzylmethylamine (1.4 mL, 11 mmol) and potassium carbonate (1.51 g, 10.9 mmol) to give 21e (246 mg, 1.09 43 mmol, 12%) as a yellow oil. R_f (20% hexane in DCM) 0.68; 44 v_{max}/cm⁻¹ 1712, 1596, 1484, 1453; ¹H NMR (400 MHz, CDCl₃) 45 10.35 (1H, s, CHO), 7.77 (1H, dd, J 7.7, 1.7, C(6)H), 7.47 - 7.38 46 (1H, m, C(4)H), 7.30 – 7.26 (2H, m, C(5')H), 7.24 – 7.21 (3H, m, 47 C(4')H + C(6')H, 7.05 (1H, d, J 8.5, C(3)H), 7.02 (1H, t, J 7.6, 48 C(5)*H*), 4.29 (2H, s, C(2') H_2), 2.77 (3H, s, C(1') H_3); ¹³C{¹H} 49 NMR (100 MHz, CDCl₃) 191.4 (CHO), 155.8 (C(2)), 137.5 50 (C(3')), 134.8 (C(4)), 130.3 (C(6)), 128.6 (C(5')), 128.2 (C(1)),51 128.1 (C(4')), 127.5 (C(6')), 121.7 (C(5)), 119.6 (C(4)), 62.5 52 (C(2')), 42.4 (C(1')); m/z (ESI+) 226.0 (MH+, 100%); HRMS (ESI⁺) m/z: [MH]+ Calcd for C₁₅H₁₆NO 226.1226; Found 53 226.1226. Experimental data is in agreement with reported 54 values.57 55

56 2-(Benzyl(ethyl)amino)benzaldehyde (21f)

57 General procedure A (48 h) from 2-fluorobenzaldehyde (1.0 mL, 58 9.5 mmol), N-ethylbenzylamine (1.6 mL, 11 mmol) and potassium 59 carbonate (1.51 g, 10.9 mmol) to give 21f (574 mg, 2.40 mmol, 60 25%) as a yellow oil, isolated as an inseparable mixture with aldehyde. R_f (20% hexane in DCM) 0.71; v_{max}/cm⁻¹ 1739, 1595, 1481, 1453; ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, Chloroform-d) & 10.50 (1H, d, J 0.5, CHO), 7.84 (1H, dd, J 7.7, 1.8, C(6)H), 7.50 (1H, ddd, J 8.2, 7.2, 1.8, C(4)H), 7.35 - 7.25 (5H, m, C(5')H + C(6')H + C(7')H), 7.18 (1H, d, J 8.2, C(3)H), 7.12 (1H, t, J7.5, C(5)H), 4.34 (2H, s, C(3')H₂), 3.20 (2H, q, J7.1, C(1')*H*₂), 1.09 (3H, t, *J* 7.1, C(2')*H*₃); ¹³C{¹H} NMR (100 MHz, CDCl₃) 191.8 (CHO), 154.6 (C(2)), 137.9 (C(4')), 134.5 (C(4)), 130.4 (C(1)), 129.2 (C(6)), 128.5 (C(5') or C(6')), 128.4 (C(5') or *C*(6')), 127.4 (*C*(7')), 122.7 (*C*(5)), 122.1 (*C*(3)), 58.5 (*C*(3')), 49.7 (C(1')), 11.9 (C(2')); m/z (ESI⁺) 240.2 (MH⁺, 100%); HRMS (ESI⁺) m/z: [MH]+ Calcd for C₁₆H₁₈NO 240.1383; Found 240.1384. Experimental data is in agreement with reported values.58

2-(Dibenzylamino)benzaldehyde (21h)

General procedure A (24 h) from 2-fluorobenzaldehyde (500 µL, 4.75 mmol), dibenzylamine (1.0 mL, 5.5 mmol) and potassium carbonate (755 mg, 5.46 mmol). A complex mixture was obtained, which was used in the following step (formation of 22h) without further purification.

2-(Diethylamino)-5-nitrobenzaldehyde (21i)

General procedure A (24 h) from 2-fluoro-5-nitrobenzaldehyde (500 mg, 2.96 mmol), diethylamine (350 µL, 3.40 mmol) and potassium carbonate (470 mg, 3.40 mmol) to give 21i (326 mg, 1.47 mmol, 50%) as a yellow solid. $R_f(20\%$ hexane in DCM) 0.55; v_{max}/cm⁻¹ 1739, 1592, 1572, 1435; ¹H NMR (400 MHz, CDCl₃) 10.01 (1H, s, CHO), 8.59 (1H, d, J 2.8, C(6)H), 8.20 (1H, dd, J 9.3, 2.9, C(4)H), 7.02 (1H, d, J 9.3, C(3)H), 3.44 (4H, q, J 7.1, $C(1')H_2$, 1.23 (6H, t, J 7.1, $C(2')H_3$); ¹³ $C\{^{1}H\}$ NMR (100 MHz, CDCl₃) 188.5 (CHO), 156.9 (C(2)), 139.4 (C(5)), 128.7 (C(1)), 128.5 (C(4)), 125.3 (C(6)), 118.2 (C(4)), 48.1 (C(2')), 12.7 (C(1')); m/z (ESI⁺) 223.0 (MH⁺, 100%); HRMS (ESI⁺) m/z; [MH]+ Calcd for C₁₁H₁₅N₂O₃ 223.1077; Found 223.1079.

5-Bromo-2-(diethylamino)benzaldehyde (21j)

General procedure A (24 h) from 5-bromo-2-fluorobenzaldehyde (300 µL, 2.53 mmol), diethylamine (300 µL, 2.91 mmol) and potassium carbonate (402 mg, 2.91 mmol) to give 21j (304 mg, 1.19 mmol, 47%) as a yellow oil. R_f (20% hexane in DCM) 0.77; v_{max}/cm⁻¹ 1739, 1680, 1467, 1585; ¹H NMR (400 MHz, CDCl₃) 10.24 (1H, s, CHO), 7.89 (1H, d, J 2.6, C(6)H), 7.56 (1H, dd, J 8.7, 2.6, C(4)H), 7.03 (1H, d, J 8.7, C(3)H), 3.17 (4H, q, J 7.1, C(1')H₂), 1.05 (6H, t, J 7.1, C(2')H₃); ¹³C{¹H} NMR (100 MHz, CDCl₃) 190.7 (CHO), 153.5 (C(2)), 137.0 (C(4)), 132.1 (C(1)), 131.7 (C(6)), 123.7 (C(3)), 115.6 (C(5)), 49.1 (C(1')), 12.4 $(C(2^{\circ}))$; HRMS (CI⁺) m/z: [M]+ Calcd for C₁₁H₁₅BrNO 256.0332; Found 256.0333.

Methyl (2'R,3R,6R,7aR)-3-(tert-butyl)-1'-ethyl-2'-methyl-5,7dioxo-1',4'-dihydro-1H,2'H,3H,5H-spiro[pyrrolo[1,2c]oxazole-6,3'-quinoline]-7a(7H)-carboxylate (22a)

General procedure B (6 h) from tetramate 5a (100 mg, 0.39 mmol) and 2-(diethylamino)benzaldehyde 21a (76 mg, 0.43 mmol) to give spirocycle 22a (11 mg, 0.027 mmol, 7%) via in vacuo concentration of reaction mixture instead of precipitation, isolated as a mixture of 2 diastereomers. R_f (5% MeOH in EtOAc) 0.91; ¹H NMR (600 MHz, C₆D₆, 3:1 mixture of diastereomers) major isomer 22a"" 7.13 (1H, t, J 7.3, C(11')H), 7.04 (1H, d, J 7.4, C(9')H), 6.77 (1H, td, J 7.4, 1.1, C(10')H), 6.57 (1H, d, J 8.2, C(12')H), 5.13 (1H, s, C(3)H), 4.69 (1H, d, J9.0, C(1)H_AH_B), 4.30 (1H, qd, *J* 6.5, 1.0, C(5')*H*), 3.48 (1H, d, *J* 17.4, C(7')*H*_AH_B), 3.22 (3H, s, CO₂CH₃), 3.19 – 3.10 (1H, m, C(1')H_AH_B), 3.02 (1H, d, J 9.0, C(1)H_AH_B), 2.93 (1H, dq, J 14.5, 7.2, C(1')H_AH_B), 2.50 (1H,

34

35

36

37

38

39

40

41

42

43

1 d, J 17.1, C(7')H_AH_B), 1.10 (3H, d, J 6.6, C(4')H₃), 1.03 (9H, s, 2 C(CH₃)₃), 0.90 (3H, t, J 7.1, C(2')H₃); ${}^{13}C{}^{1}H$ NMR (125 MHz, 3 C₆D₆) major isomer **22a**^{**} 199.5 (C(7)), 177.8 (C(5)), 168.1 4 (CO₂CH₃), 142.3 (C(13')), 129.7 (C(9')), 128.4 (C(11')), 117.4 5 (C(8')), 117.2 (C(10')), 112.2 (C(12')), 98.9 (C(3)), 78.6 (C(7a)), 6 69.7 (C(1)), 56.4 (C(6)), 56.2 (C(5')), 52.9 (CO₂CH₃), 45.6 7 (C(1')), 35.5 (C(CH₃)₃), 26.8 (C(7')), 25.1 (C(CH₃)₃), 15.3 (C(4'))), 8 13.9 (C(2')); m/z (ESI⁺) 415.0 (MH⁺, 100%); HRMS (ESI⁺) m/z:

8 [MH]+ Calcd for $C_{23}H_{31}N_2O_5$ 415.2227; Found 415.2225.

Methyl (3*R*,7a*R*)-1'-benzyl-3-(*tert*-butyl)-5,7-dioxo-2'-phenyl 1',4'-dihydro-1*H*,2'*H*,3*H*,5*H*-spiro[pyrrolo[1,2-*c*]oxazole-6,3' quinoline]-7a(7*H*)-carboxylate (22h)

13 General procedure B (6 h) from tetramate 5a (50 mg, 0.20 mmol) 14 and impure 2-(dibenzylamino)benzaldehyde 21h (65 mg, 0.22 15 mmol) to give spirocycle 22h (46 mg, 0.085 mmol, 43%) via in 16 vacuo concentration of reaction mixture instead of precipitation, 17 isolated as a mixture of 4 diastereomers. Rf (25% EtOAc in petrol) 18 0.71; ¹H NMR (400 MHz, C₆D₆, mixture of diastereomers) major 19 isomer 7.36 - 7.29 (2H, m, Ar), 7.18 - 6.91 (10H, m, Ar), 6.78 (1H, t, J 7.4, C(10')H), 6.56 (1H, d, J 8.2, C(12')H), 5.49 (1H, s, 20 C(5')H), 5.06 (1H, s, C(3)H), 4.74 (1H, d, J 9.0, C(1)H_AH_B), 4.39 21 (1H, d, J 17.6, C(1')H_AH_B), 4.06 (1H, d, J 17.6, C(1')H_AH_B), 3.53 22 (1H, d, J 17.2, C(7')H_AH_B), 3.10 (1H, d, J 8.6, C(1)H_AH_B), 2.94 23 (3H, s, CO₂CH₃), 2.62 (1H, d, J 17.2, C(7')H_AH_B), 1.02 (9H, s, 24 C(CH₃)₃); ¹³C{¹H} NMR (100 MHz, C₆D₆) major isomer 199.4 25 (C(7)), 175.4 (C(5)), 167.5 (CO₂CH₃), 144.7 (Ar), 138.6 (Ar), 26 129.6 (C(9')), 128.8 - 127.1 (Ar), 126.5 (Ar), 117.6 (C(8')), 111.0 27 (C(12')), 98.8 (C(3)), 79.0 (C(7a)), 70.0 (C(1)), 64.0 (C(5')), 57.8 28 (C(6)), 53.8 (C(1')), 53.0 (CO₂CH₃), 35.6 (C(CH₃)₃), 27.0 (C(7')), 29 25.2 (C(CH₃)₃); *m/z* (ESI⁺) 539.2 (MH⁺, 100%); HRMS (ESI⁺) m/z: [MH]+ Calcd for C₃₃H₃₅N₂O₅ 539.2540; Found 539.2537. 30

31
325-Bromo-2-(pyrrolidin-1-yl)benzaldehyde (23)

General procedure A (6 h) from 5-bromo-2-fluorobenzaldehyde (300 μ L, 2.53 mmol), pyrrolidine (250 μ L, 3.04 mmol) and potassium carbonate (420 mg, 3.04 mmol) to give **23** (478 mg, 1.88 mmol, 74%) as a brown oil. R_f (5% EtOAc in petrol) 0.26; v_{max}/cm^{-1} 1739, 1559, 1458, 1152; ¹H NMR (400 MHz, CDCl₃) 10.01 (1H, s, CHO), 7.78 (1H, d, *J* 2.5, C(6)*H*), 7.41 (1H, dd, *J* 9.0, 2.6, C(4)*H*), 6.71 (1H, d, *J* 9.0, C(3)*H*), 3.38 – 3.29 (4H, m, C(4')*H*₂), 2.02 – 1.96 (4H, m, C(3')*H*₂); ¹³C {¹H} NMR (100 MHz, CDCl₃) 188.9 (CHO), 149.0 (C(2)), 136.8 (C(4)), 134.7 (C(6)), 124.0 (C(1)), 116.6 (C(3)), 108.3 (C(5)), 53.0 (C(2')), 26.1 (C(1')); *m/z* (ESI⁺) 254.0 (MH⁺, 100%); HRMS (ESI⁺) m/z: [MH]+ Calcd for C₁₁H₁₂BrNO 254.0175; Found 254.0175.

44 45 4-(Pyrrolidin-1-yl)-[1,1'-biphenyl]-3-carbaldehyde (24)

46 5-bromo-2-(pyrrolidin-1-yl)benzaldehyde (430 mg, 1.68 mmol) 47 and phenylboronic acid (310 mg, 2.52 mmol) were dissolved in 48 anhydrous THF (20 mL). To the solution were added Pd(dppf)Cl₂ 49 (62.8 mg, 0.216 mmol) and Cs₂CO₃ (1.65 g in 2 mL H₂O, 5.07 mmol). The mixture was stirred at room temperature for 40 min, 50 and then heated to reflux for 48 h. The mixture was then allowed 51 to cool to room temperature, diluted with EtOAc, filtered through 52 Celite and concentrated. The residue was taken up into EtOAc, 53 washed with brine and saturated aqueous NaHCO₃ (2 x 15 mL) 54 and concentrated in vacuo, and then purified by flash column 55 chromatography to give biphenyl 24 (267 mg, 1.06 mmol, 63%) 56 as a yellow oil. R_f (5% EtOAc in petrol) 0.77; v_{max}/cm^{-1} 1738, 57 1541, 1494, 1449; ¹H NMR (400 MHz, CDCl₃) 10.17 (1H, s, 58 CHO), 7.96 (1H, d, J 2.4, C(3)H), 7.67 (1H, dd, J 8.8, 2.4, C(6)H), 59 7.62 - 7.56 (2H, m, C(5')H), 7.47 - 7.38 (2H, m, C(6')H), 7.35 -7.27 (1H, m, C(7')H), 6.92 (1H, d, J 8.8, C(5)H), 3.47 – 3.37 (4H, 60 m, C(2')H), 2.07 – 1.97 (4H, m, C(3')H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) 190.3 (CHO), 149.4 (C(3)), 140.0 (C(4')), 132.9 (C(6)), 131.3 (C(3)), 129.4 (C(2)), 128.9 (C(6')), 126.7 (C(7')), 126.3 (C(5')), 123.1 (C(4)), 115.3 (C(5)), 53.0 (C(2')), 26.1 (C(1')); HRMS (SI⁺) m/z: [M]+ Calcd for $C_{17}H_{17}NO$ 251.1310; Found 251.1298.

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.xxxx. ¹H and ¹³C NMR spectra; calculated energies; X-ray crystallographic data (PDF).

5. Acknowledgements

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement n° 316955. We would also like to thank Remi Tirfoin for collection of some of the X-ray diffraction data.

6. References

- Saleem, M.; Nazir, M.; Ali, M. S.; Hussain, H.; Lee, Y. S.; Riaz, N.; Jabbar, A. Antimicrobial Natural Products: An Update on Future Antibioticdrug Candidates. *Nat. Prod. Rep.* 2010, 27 (2), 238–254.
- Boucher, H. W.; Talbot, G. H.; Benjamin, D. K.; Bradley, J.; Guidos, R. J.; Jones, R. N.; Murray, B. E.; Bonomo, R. A.; Gilbert, D. 10 x '20 Progress--Development of New Drugs Active Against Gram-Negative Bacilli: An Update From the Infectious Diseases Society of America. *Clin. Infect. Dis.* 2013, *56* (12), 1685–1694.
- (3) Butler, M. S.; Blaskovich, M. A.; Cooper, M. A. Antibiotics in the Clinical Pipeline at the End of 2015. *J. Antibiot.* **2017**, 70 (1), 3–24.
- (4) Christoffersen, R. E. Antibiotics An Investment Worth Making? *Nat. Biotechnol.* **2006**, *24* (12), 1512–1514.
- (5) Fox, J. L. The Business of Developing Antibacterials. *Nat. Biotechnol.* **2006**, *24* (12), 1521–1528.
- (6) Katz, M. L.; Mueller, L. V; Polyakov, M.; Weinstock, S. F. Where Have All the Antibiotic Patents Gone? *Nat. Biotechnol.* 2006, 24 (12), 1529–1531.
- (7) Kraus, C. N. Low Hanging Fruit in Infectious Disease Drug Development. *Curr. Opin. Microbiol.* 2008, 11 (5), 434– 438.
- (8) Kinch, M. S.; Patridge, E.; Plummer, M.; Hoyer, D. An Analysis of FDA-Approved Drugs for Infectious Disease: Antibacterial Agents. *Drug Discov. Today* 2014, 19 (9), 1283–1287.
- (9) Anderson, A. C.; Pollastri, M. P.; Schiffer, C. A.; Peet, N. P. The Challenge of Developing Robust Drugs to Overcome Resistance. *Drug Discov. Today* 2011, *16* (17–18), 755– 761.
- (10) Hurdle, J. G.; O'Neill, A. J.; Chopra, I.; Lee, R. E. Targeting Bacterial Membrane Function: An Underexploited Mechanism for Treating Persistent Infections. *Nat. Rev. Microbiol.* **2011**, *9* (1), 62–75.
- Wright, G. D. Molecular Mechanisms of Antibiotic Resistance. *Chem. Commun.* 2011, 47 (14), 4055.
- (12) Brown, D. G.; Lister, T.; May-Dracka, T. L. New Natural Products as New Leads for Antibacterial Drug Discovery. *Bioorg. Med. Chem. Lett.* **2014**, *24*, 413–418.

 Walsh, C. T.; Wencewicz, T. A. Prospects for New Antibiotics: A Molecule-Centered Perspective. J. Antibiot. 2014, 67 (1), 7–22.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

- Butera, J. A. Phenotypic Screening as a Strategic Component of Drug Discovery Programs Targeting Novel Antiparasitic and Antimycobacterial Agents: An Editorial. J. Med. Chem. 2013, 56 (20), 7715–7718.
- (15) Zheng, W.; Thorne, N.; McKew, J. C. Phenotypic Screens as a Renewed Approach for Drug Discovery. *Drug Discov. Today* 2013, 18 (21–22), 1067–1073.
- (16) Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335.
- (17) Hughes, J. P.; Rees, S. S.; Kalindjian, S. B.; Philpott, K. L. Principles of Early Drug Discovery. *Br. J. Pharmacol.* 2011, *162* (6), 1239–1249.
- (18) Swinney, D. C.; Anthony, J. How Were New Medicines Discovered? *Nat. Rev. Drug Discov.* **2011**, *10* (7), 507–519.
- Miller, A. A.; Bundy, G. L.; Mott, J. E.; Skepner, J. E.;
 Boyle, T. P.; Harris, D. W.; Hromockyj, A. E.; Marotti, K. R.; Zurenko, G. E.; Munzner, J. B.; et al. Discovery and Characterization of QPT-1, the Progenitor of a New Class of Bacterial Topoisomerase Inhibitors. *Antimicrob. Agents Chemother.* 2008, *52* (8), 2806–2812.
- 25 (20) Basarab, G. S.; Dumas, J.; Hill, P. WO2009004382 A2, 2009.
- 27
 28 (21) Basarab, G. S.; Galullo, V.; Degrace, N.; Hauck, S.; Joubran, C.; Wesolowski, S. S. Synthesis of a Tetrahydronaphthyridine Spiropyrimidinetrione Dna Gyrase Inhibiting Antibacterial Agent - Differential Substitution at All Five Carbon Atoms of Pyridine. Org. Lett. 2014, 16
 32 (24), 6456–6459.
- 33 (22) Basarab, G. S.; Brassil, P.; Doig, P.; Galullo, V.; Haimes, H.
 34 B.; Kern, G.; Kutschke, A.; McNulty, J.; Schuck, V. J. A.;
 35 Stone, G.; et al. Novel DNA Gyrase Inhibiting
 36 Spiropyrimidinetriones with a Benzisoxazole Scaffold: Sar
 37 and in Vivo Characterization. J. Med. Chem. 2014, 57 (21),
 38
- Huband, M. D.; Bradford, P. A.; Otterson, L. G.; Basarab, 39 (23) G. S.; Kutschke, A. C.; Giacobbe, R. A.; Patey, S. A.; Alm, 40 R. A.; Johnstone, M. R.; Potter, M. E.; et al. In Vitro 41 Antibacterial Activity of AZD0914, a New 42 Spiropyrimidinetrione DNA Gyrase/Topoisomerase 43 Inhibitor with Potent Activity against Gram-Positive, 44 Fastidious Gram-Negative, and Atypical Bacteria. 45 Antimicrob. Agents Chemother. 2015, 59 (1), 467-474.
- 46 (24) Basarab, G. S.; Kern, G. H.; McNulty, J.; Mueller, J. P.; Lawrence, K.; Vishwanathan, K.; Alm, R. A.; Barvian, K.;
 48 Doig, P.; Galullo, V.; et al. Responding to the Challenge of Untreatable Gonorrhea: ETX0914, a First-in-Class Agent with a Distinct Mechanism-of-Action against Bacterial Type II Topoisomerases. *Sci. Rep.* 2015, 5 (July), 1–14.
- (25) Kern, G.; Palmer, T.; Ehmann, D. E.; Shapiro, A. B.;
 Andrews, B.; Basarab, G. S.; Doig, P.; Fan, J.; Gao, N.;
 Mills, S. D.; et al. Inhibition of Neisseria Gonorrhoeae Type II Topoisomerases by the Novel Spiropyrimidinetrione AZD0914. J. Biol. Chem. 2015, 290 (34), 20984–20994.
- 57 (26) Meth-Cohn, O.; Suschitzky, H. Heterocycles by Ring Closure of Ortho-Substituted t-Anilines (The t-Amino Effect). Adv. Heterocycl. Chem. 1972, 14, 211–278.
- 60 (27) Verboom, W.; Reinhoudt, D. N.; Visser, R.; Harkema, S. "Tert-Amino Effect" in Heterocyclic Synthesis. Formation

of N-Heterocycles by Ring-Closure Reactions of Substituted 2-Vinyl-N,N-Dialky Lanilines. *J. Org. Chem.* **1984**, *49* (2), 269–276.

- (28) Nijhuis, W. H. N.; Verboom, W.; El-fadl, A. A.; Harkema, S.; Reinhoudt, D. N. Stereochemical Aspects of the "Tert-Amino Effect". 1. Regioselectivity in the Synthesis of Pyrrolo[1,2-a]Quinolines and Benzo[c]Quinolizines. J. Org. Chem. 1989, 54 (1), 199–209.
- (29) Ryabukhin, S. V; Plaskon, A. S.; Volochnyuk, D. M.; Shivanyuk, A. N.; Tolmachev, A. A. A One-Pot Fusion of Nitrogen-Containing Heterocycles. *Synthesis* 2007, No. 18, 2872–2886.
- (30) Rabong, C.; Hametner, C.; Mereiter, K.; Kartsev, V. G.; Jordis, U. Scope and Limitations of the T-Reaction Employing Some Functionalized C-H-Acids and Naturally Occurring Secondary Amines. *Heterocycles* 2008, 75 (4), 799–838.
- Ruble, J. C.; Hurd, A. R.; Johnson, T. A.; Sherry, D. A.; Barbachyn, M. R.; Toogood, P. L.; Bundy, G. L.; Graber, D. R.; Kamilar, G. M. Synthesis of (-)-PNU-286607 by Asymmetric Cyclization of Alkylidene Barbiturates. *J. Am. Chem. Soc.* 2009, *131* (11), 3991–3997.
- (32) Deeva, E. V.; Glukhareva, T. V.; Zybina, N. A.; Morzherin, Y. Y. Stereoselective Synthesis of Spiro Derivatives of 2,4-Dimethyl-2,3,4,4a,5,6-Hexahydro-6H-Benzo[c]Quinolizine. *Russ. Chem. Bull. Int. Ed.* 2005, 54 (6), 1537–1538.
- (33) Krasnov, K. A.; Kartsev, V. G. Chemical Modification of Plant Alkaloids. 6. T-Reactions of Anabasine Derivatives. *Chem. Nat. Compd.* 2011, 46 (6), 915–919.
- (34) Yong-Chul, J.; Moloney, M. G. Equisetin, Reutericyclin and Streptolodygin as Natural Product Lead Structures for Novel Antibiotic Libraries. *Future Med. Chem.* 2015, 7 (14), 1861–1877.
- (35) Anwar, M.; Moloney, M. G. Chiral Bicyclic Tetramates as Non-Planar Templates for Chemical Library Synthesis. *Chem. Biol. Drug Des.* **2013**, *81*, 645–649.
- (36) Butt, N. A.; Moody, C. J. Synthesis of Spirotetramates via a Diels-Alder Approach. Org. Lett. 2011, 13 (9), 2224–2227.
- (37) Fischer, R.; Pontzen, R.; Vermeer, R.; Franken, E.-M.; Malsam, O.; Pitta, L.; Reckmann, U. 4'4'-Dioxaspiro-Spirocyclically Substituted Tetramates, 2011.
- (38) Ramakumar, K.; Maji, T.; Partridge, J. J.; Tunge, J. A. Synthesis of Spirooxindoles via the Tert-Amino Effect. Org. Lett. 2017, 19 (15), 4014–4017.
- (39) Kempf, K.; Kempf, O.; Orozco, M.; Bilitewski, U.; Schobert, R. Synthesis and Structural Revision of the Fungal Tetramic Acid Metabolite Spiroscytalin. J. Org. Chem. 2017, 82 (15), 7791–7795.
- (40) Josa-Culleré, L.; Moloney, M. G.; Thompson, A. L. Stereoselectivity in the Reduction of Bicyclic Tetramates. *Synlett* 2016, 27 (11), 1677–1681.
- (41) D'yachenko, E. V.; Glukhareva, T. V.; Nikolaenko, E. F.; Tkachev, A. V.; Morzherin, Y. Y. Tert-Amino Effect in Heterocyclic Chemistry. Synthesis of Hydrogenated Spiro Derivatives of Quinolines. *Russ. Chem. Bull.* 2004, 53 (6), 1240–1247.
- Krasnov, K. A.; Kartsev, V. G. Synthesis of Spiroheterocyclic Systems from Barbituric Acids and N,N-Disubstituted o-Aminobenzaldehydes. *Russ. J. Org. Chem.* 2005, 41 (6), 901–906.
- (43) Platonova, A. Y.; Deeva, E. V.; Zimovets, O. A.;

1 2 3 4 5		Shatunova, D. V.; El'tsov, O. S.; Slepukhin, P. A.; Glukhareva, T. V.; Morzherin, Y. Y. Regioselective Reaction of Ortho-Piperidinobenzaldehydes with Pyrazolone. <i>Russ. Chem. Bull. Int. Ed.</i> 2011 , <i>60</i> (5), 961– 964.	(55)
6 7 8	(44)	Andrews, M. D.; Brewster, A. G.; Moloney, M. G. Diastereocontrolled Synthesis of Hydroxylated Lactams. <i>J.</i> <i>Chem. Soc. Perkin Trans. 1</i> 2002 , 80–90.	(56)
9 10 11 12 13	(45)	Krasnov, K. A.; Kartsev, V. G.; Khrustalev, V. N. Diastereoselective Synthesis of 1-Alkyl-2,4,6- Trioxoperhydropyrimidine-5- Spiro-3'-(1',2',3',4'- Tetrahydroquinolines). <i>Tetrahedron</i> 2010 , <i>66</i> (32), 6054– 6061.	(57)
14 15 16 17	(46)	Saurí, J.; Parella, T.; Espinosa, J. F. CLIP-HSQMBC: Easy Measurement of Small Proton–Carbon Coupling Constants in Organic Molecules. <i>Org. Biomol. Chem.</i> 2013 , <i>11</i> (27), 4473.	(58)
18 19 20	(47)	Karplus, M. Contact Electron-Spin Coupling of Nuclear Magnetic Moments Contact Electron-Spin Coupling of Nuclear Magnetic Moments. J. Chem. Phys. 1959 , 30 (1), 10–15.	(59)
21 22 23 24 25 26 27	(48)	Single crystal X-ray diffraction data were collected using a (Rigaku) Supernova A diffractometer fitted with an Oxford CryoSystems CryoStream open flow cooling device. ⁵⁹ Raw frame data were collected and reduced using CrysAlisPro; the structures were solved and refined using SuperFlip ⁶⁰ within the CRYSTALS refinement software suite. ⁶¹ Hydrogen atoms were generally visible in the difference	(61)
28 29 30 31 32 33 34 35		Fourier map and refined with restraints prior to inclusion in the final refinement using a riding model. ⁶² In each case, the Flack x parameter ⁶³ was determined by inclusion in the model and refinement using full-matrix least-squares. ⁶⁴ Selected refinement details for each structure are given below and full details can be found in the ESI (CIF). Crystallographic data have also been deposited with the Cambridge Crystallographic Data Centre (CCDC 1917109- 1917113) and copies of these data can be obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif.	(62) (63)
36 37 38 39	(49)	Anwar, M.; Moloney, M. G. Efficient Enantioselective Synthesis of Tetramic Acids and Lactams from Threonine. <i>Tetrahedron Lett.</i> 2007 , <i>48</i> (41), 7259–7262.	(64)
40 41 42 43 44	(50)	Panduwawala, T. D.; Iqbal, S.; Tirfoin, R.; Moloney, M. G. Chemoselectivity and Stereoselectivity of Cyclisation Pathways Leading to Bicyclic Tetramates Controlled by Ring-Chain Tautomerisation in Thiazolidines. <i>Org. Biomol.</i> <i>Chem.</i> 2016 , <i>14</i> (19), 4464–4478.	
45 46 47 48	(51)	Andrews, M. D.; Brewster, A. G.; Crapnell, K. M.; Ibbett, A. J.; Jones, T.; Moloney, M. G.; Prout, K.; Watkin, D. Regioselective Dieckmann Cyclisations Leading to Enantiopure Highly Functionalised Tetramic Acid Derivatives. J. Chem. Soc. Perkin Trans. 1 1998 , 223–235.	
49 50 51 52	(52)	Jeong, YC.; Anwar, M.; Bikadi, Z.; Hazai, E.; Moloney, M. G. Natural Product Inspired Antibacterial Tetramic Acid Libraries with Dual Enzyme Inhibition. <i>Chem. Sci.</i> 2013 , <i>4</i> , 1008–1015.	
53 54 55 56 57	(53)	Krogsgaard-Larsen, N.; Begtrup, M.; Herth, M. M. Novel, Versatile Three-Step Synthesis of 1,2,3,4,10,10a- Hexahydro- Pyrazino[1,2-a]Indoles by Intramolecular Carbene-Mediated C–H Insertion. <i>Synthesis</i> 2010 , No. 24, 4287–4299.	
58 59 60	(54)	Barbachyn, M. R.; Dobrowolski, P. J.; Hurd, A. R.; Mcnnamara, D. J.; Palmer, J. R.; Romero, A. G.; Ruble, J. C.; Sherry, D. A.; Thomasco, P. L. WO2004031195 A1, 2004.	

- (55) On careful inspection of the raw frame images, weak additional reflections were visible. These were indexed with respect to the main unit cell reflections using the vector 0.0015(6) 0 0.4348(6). The reflections were too weak to integrate and use for refinement so the structure reported is the three dimensional, average structure.
- (56) Chen, Z.; Liu, J.; Pei, H.; Liu, W.; Chen, Y.; Wu, J.; Li, W.; Li, Y. Directed Amination of Aryl Methyl Ethers Mediated by Ti(NMe2)4 at Room Temperature. *Org. Lett.* 2015, *17* (14), 3406–3409.
- (57) Murarka, S.; Zhang, C.; Konieczynska, M. D.; Seidel, D. Lewis Acid Catalyzed Formation of Tetrahydroquinolines via an Intramolecular Redox Process. *Org. Lett.* 2009, *11* (1), 129–132.
- (58) Sun, H.; Yang, C.; Gao, F.; Li, Z.; Xia, W. Oxidative C-C Bond Cleavage of Aldehydes via Visible-Light Photoredox Catalysis. Org. Lett. 2013, 15 (3), 624–627.
- (59) Cosier, J.; Glazer, A. M. A Nitrogen-Gas-Stream Cryostat for General X-ray Diffraction Studies. J. Appl. Cryst. 1986, 19, 105-107.
- (60) Palatinus, L.; Chapuis. G. SUPERFLIP a computer program for the solution of crystal structures by <u>charge</u> <u>flipping</u> in arbitrary dimensions. J. Appl. Cryst., 2007, 40, 786-790.
- (61) Betteridge, P.W.; Carruthers, J.R.; Cooper, R.I.; Prout, K.; Watkin, D.J. CRYSTALS version 12: software for guided crystal structure analysis. *J. Appl. Cryst.* 2003, *36*, 1487; Parois, P.; Cooper, R. I.; Thompson, A. L. Crystal structures of increasingly large molecules: meeting the challenges with CRYSTALS software *Chem. Cent. J.*, 2015 9:30.
- (62) Cooper, R.I.; Thompson, A.L.; Watkin, D.J. CRYSTALS Enhancements: Dealing with Hydrogen Atoms in Refinement. J. Appl. Cryst. 2010, 43, 1100-1107.
- Flack, H. D. On Enantiomorph-Polarity Estimation. Acta Cryst. 1983 A39, 876-881; Flack, H. D.; Bernardinelli, G. Reporting and evaluating absolute-structure and absoluteconfiguration determinations. J. Appl. Cryst. 2000, 33, 1143-1148.
- (64) Thompson, A. L.; Watkin, D. J. CRYSTALS enhancements: absolute structure determination. J. Appl. Cryst. 2011, 44, 1017-1022.