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Over the past few decades, the development of palladi-
um-catalyzed carbon–carbon bond-forming reactions has
dramatically advanced “state-of-the-art” organic synthesis.[1]

The most commonly applied palladium-catalyzed carbon–
carbon bond-forming reactions in synthesis are the Heck,
Stille, Suzuki, Sonogashira, Tsuji–Trost, and the Negishi re-
actions. In particular, the development of alternative meth-
odologies that could be advantageous in terms of the selec-
tivity and the availability of starting materials prior to the
carbon–carbon bond-forming event is of interest.[2] Recently,
Pd-catalyzed cross-coupling reactions of diazo compounds
have emerged as a new type of cross-coupling reaction for
the construction of carbon–carbon bonds.[3] An alternative
route that makes use of N-tosylhydrazones as nucleophiles,
which are an in situ source of diazo compounds for this
transformation, has attracted much attention. The required
N-tosylhydrazones are easily generated from carbonyl com-
pounds, and the reaction can be seen as a cross-coupling of
carbonyl groups, a process of high synthetic relevance that
involves several steps and other methodologies. Recently,
the groups of Barluenga and Wang have made significant
progress towards palladium-catalyzed coupling reactions by
using N-tosylhydrazones as the coupling partner.[4,5,6] A mi-
gratory insertion involving a palladium–carbene is proposed
to account for these cross-coupling reactions.[7] However,
palladium-catalyzed oxidative cross-coupling reactions using
N-tosylhydrazones as the nucleophile are less developed.[5]

Herein, we report a new palladium-catalyzed oxidative
cross-coupling reaction of N-tosylhydrazones with allylic al-
cohols for the formation of carbon–carbon bonds. The reac-
tion proceeds with readily available starting materials and
affords substituted alkenes in a highly stereoselective
manner.

Initially, we explored the Pd-catalyzed reaction of allylic
alcohol 1 a with N-tosylhydrazone 2 a (Table 1). We found
that a small amount of product 3 aa was obtained when
oxygen was used as an oxidant (Table 1, entry 1). This result
peaked our interest and we then screened for suitable reac-

tion conditions for the synthesis of product 3 aa. Subse-
quently, we tested a series of oxidants in the reaction; how-
ever, inferior results were obtained when using tert-butyl hy-
droperoxide (TBHP), 2,3-dichloro-5,6-dicyano-1,4-benzoqui-
none (DDQ), Ag2CO3, PhI ACHTUNGTRENNUNG(OAc)2, or Cu ACHTUNGTRENNUNG(OAc)2 as an oxi-
dant (Table 1, entries 2–6). To our delight, the use of
benzoquinone (BQ) as the oxidant greatly promoted the Pd-ACHTUNGTRENNUNG(OAc)2-catalyzed reaction of 1 a with 2 a, leading to the cor-
responding product 3 aa in 88 % GC yield (Table 1, entry 7).
Notably, none of the desired product 3 aa was detected
when CuACHTUNGTRENNUNG(OAc)2 was used as the metal catalyst (Table 1,
entry 8). The reaction did not occur without the palladium
catalyst (Table 1, entry 9); thus, the optimal reaction condi-
tions for the cross-coupling of N-tosylhydrazones with allylic
alcohols involved the treatment of allylic alcohol 1 a with
N-tosylhydrazone 2 a in acetonitrile at 90 8C in the presence
of palladium acetate (10 mol%) and lithium tert-butoxide
(3.0 equiv) using BQ (2.0 equiv) as an oxidant.

With the optimized reaction conditions identified, the N-
tosylhydrazone substrate scope was then investigated as
shown in Table 2. The cross-coupling reaction of aromatic
N-tosylhydrazones containing electron-withdrawing or elec-
tron-donating groups afforded the desired products (3 aa–
3 ah) in moderate to good yields. We also found no signifi-
cant effect on the reactivity when compounds were used
which had substituents at the para-, meta-, and ortho posi-
tions of the aromatic ring (products 3 ad–3 af). The naphthyl
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Table 1. Optimization of reaction conditions.[a]

Entry Catalyst Oxidant Yield [%][b]

1 [Pd ACHTUNGTRENNUNG(OAc)2] O2 (1 atm) 8
2 [Pd ACHTUNGTRENNUNG(OAc)2] TBHP 5
3 [Pd ACHTUNGTRENNUNG(OAc)2] DDQ 0
4 [Pd ACHTUNGTRENNUNG(OAc)2] Ag2CO3 11
5 [Pd ACHTUNGTRENNUNG(OAc)2] PhIACHTUNGTRENNUNG(OAc)2 5
6 [Pd ACHTUNGTRENNUNG(OAc)2] Cu ACHTUNGTRENNUNG(OAc)2 15
7 [Pd ACHTUNGTRENNUNG(OAc)2] BQ 88 (84)
8 CuACHTUNGTRENNUNG(OAc)2 BQ 0
9 – BQ 0

[a] Reaction conditions: 1a (0.3 mmol), 2 a (0.3 mmol), catalyst
(10 mol %), and oxidant (2.0 equiv) in MeCN (3 mL) for 8 h. [b] Yields
determined by GC; number in parentheses is the yield of isolated prod-
uct.
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N-tosylhydrazone (2 i) was also a suitable substrate for this
reaction (product 3 ai). The reaction of heterocyclic N-tosyl-
hydrazones, such as furan and benzofuran, with allylic alco-
hol 1 a under similar conditions also proceeded well (prod-
ucts 3 aj and 3 ak). Notably, cyclic N-tosylhydrazones (2 l and

2 m) also underwent smooth reactions to afford the corre-
sponding products (3 l and 3 m) in good yield.

Next, we used N-tosylhydrazones 2 p, 2 q, and 2 u to exam-
ine the cross-coupling reaction with a series of allylic alco-
hols (Table 2, allylic alcohol scope). Electron-rich and elec-
tron-poor benzene derivatives, as well as alkyl-substituted
allyl alcohols, can be used. Notably, halide substituents were
tolerated on the aromatic ring and furnished the products
3 hu and 3 iu in good yields.

Stereochemistry is a very important issue in the synthesis
of polysubstitued olefins, and various trisubstituted olefins
were obtained in this reaction with high stereoselectivity
(Z/E>10:1) (Table 2, see products 3 an, 3 ao, and allylic
alcohol scope).

We succeeded in performing the reaction in a one-pot
fashion by simply heating the carbonyl compound 4 with to-
sylhydrazide prior to the addition of the allyl alcohol; the
oxidative coupling products were obtained in similar yields,
but without the need to isolate the intermediate tosylhydra-
zone. Selected examples are shown in Scheme 1. It is worth
noting that the reaction can be carried out on a multigram
scale. For example, the reaction using 10 mmol (1.98 g) of 4-
bromoacetophenone resulted in 1.44 g of the coupling prod-
uct 3 au (Scheme 1, 57 % yield of isolated product). More-
over, the one-pot process can be considered a direct oxida-
tive coupling of a carbonyl compound, a type of transforma-
tion without precedent and of great synthetic interest.

The exact mechanism for the product formation is not
clear at the present stage. A plausible mechanism for the ox-
idative cross-coupling reaction is proposed in Scheme 2. The
reaction of allyl alcohol 1 with PdII leads to palladium alkox-
ide A by an intramolecular coordination of the alkene to
the palladium center. Next, palladium alkoxide A undergoes
a C�H bond cleavage to form intermediate B, with the
double bond still coordinated to the palladium center. This
is followed by insertion of the olefin into the Pd�H bond to
give the palladium complex C.[8] Then, reaction of the diazo
compound D (generated by the base-mediated decomposi-
tion of the tosylhydrazone 2) with palladium complex C pro-
duces the Pd–carbene complex E.[3–7] Subsequently, a migra-
tory insertion occurs to give cyclic intermediate F (similar to

Table 2. Scope of reaction.[a]

[a] All reactions were conducted on a 0.3 mmol scale: 1 (0.3 mmol), 2
(0.3 mmol), [Pd ACHTUNGTRENNUNG(OAc)2] (10 mol %), BQ (2.0 equiv), and tBuOLi
(3.0 equiv) in MeCN (3 mL) at 90 8C for 8 h; yields of isolated products
are given. [b] Z/E>10:1; the Z/E selectivity was determined by 1H NMR
spectroscopy; for product 3 au, the configuration was further confirmed
by NOESY and COSY spectra.

Scheme 1. One-pot synthesis. Reaction conditions: i) carbonyl compound
(0.3 mmol), tosylhydrazide (0.3 mmol), MeCN (3 mL), 90 8C, 90 min. ii)
allyl alcohol (0.3 mmol), [Pd ACHTUNGTRENNUNG(OAc)2] (10 mol %), BQ (2.0 equiv), tBuOLi
(3.0 equiv), 90 8C, 8 h. Yields of isolated products are given. [a] Carried
out on a 10 mmol scale.
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cyclohexane), which is promoted by coordination of the car-
bonyl group to the alkylpalladium intermediate. Finally, the
olefin 3 is produced with exclusive regioselectivity by syn-b-
Hb elimination of F, and Pd0 is oxidized by benzoquinone to
regenerate the PdII species.

In this reaction pathway, the high stereoselectivity for the
formation of (E)-olefins can be explained by the transition
state of the syn-b-H elimination from intermediate F : the
group R3 prefers to eclipse with the less-bulky linear alkyl
moiety, and this arrangement leads to (E)-olefins 3 as the
main products (Scheme 2).

Another plausible mechanism starts with the initial forma-
tion of a palladium–carbene complex I (Scheme 3). After
deprotonation by a base, the palladium–carbene complex I
is transformed into to the alkenylpalladium intermediate II.
Finally, the product 3 is produced by the traditional Heck
route.[9]

However, it is possible that the allylic alcohol could be
oxidized by PdII to afford vinyl ketone, and then the base-
mediated 1,4-addition of hydrazones could occur to give the

desired product 3. To investigate this possible pathway, vinyl
ketone 4 and N-tosylhydrazone 2 a were treated with lithium
tert-butoxide at 90 8C [Eq. (1)]. Only a trace amount of
product 3 ea was detected in the 1H NMR spectrum of the
crude product. Moreover, 1 e was reacted under the opti-
mized reaction conditions but only the ketone product 5 was
observed, and no vinyl ketone 4 was detected [Eq. (2)].
Consequently, this pathway can be excluded.[10]

In conclusion, we have reported a new type of Pd-cata-
lyzed carbon–carbon bond-forming coupling reaction of N-
tosylhydrazones with allylic alcohols. The main features of
this new methodology are: 1) common and readily available
starting materials; (2 the formation of products with high
stereoselectivity. Additionally, the reaction can be carried
out on a multigram scale and in one pot. For these reasons,
this reaction is highly applicable for target-oriented organic
synthesis.

Experimental Section

General procedure : [Pd ACHTUNGTRENNUNG(OAc)2] (0.03 mol, 6.7 mg), BQ (0.6 mmol,
64.8 mg), tBuOLi (0.9 mmol, 72.1 mg), and N-tosylhydrazone 2 were
mixed with acetonitrile (3.0 mL) in a glass vial or round-bottom flask
equipped with a magnetic stirring bar. Then, allyl alcohol 1 was added
and the mixture was stirred at 90 8C for 8 h. After cooling to room tem-
perature, ethyl acetate and brine were added and the layers were separat-
ed. The aqueous phase was extracted twice with ethyl acetate. The com-
bined organic layers were washed with two portions of brine and then
dried over MgSO4 and filtered. The residue was purified by flash chroma-
tography on silica gel to obtain the desired products 3 using light petrole-
um ether/ethyl acetate (50:1 or 25:1, v/v) as eluent.
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Scheme 2. Plausible mechanism for the oxidative cross-coupling.

Scheme 3. Another plausible mechanism for the oxidative cross-coupling.
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Carbon–Carbon Bond Formation:
Palladium-Catalyzed Oxidative Cross-
Coupling of N-Tosylhydrazones with
Allylic Alcohols

In the zone : Pd-catalyzed oxidative
cross-coupling of N-tosylhydrazones
with allylic alcohols leads to C�C bond
formation. A palladium–carbene
migratory insertion is proposed to play

the key role in this transformation.
The reaction proceeds with readily
available starting materials to afford
substituted alkenes in a highly stereo-
selective manner (see scheme).
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