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Abstract: 2-Alkylidenetetrahydrofurans and 2-alkylidenepyrrol-
idines were efficiently functionalized by bromination of the exo-
cyclic double bond and subsequent palladium-catalyzed cross-
coupling reactions.
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2-Alkylidenetetrahydrofurans1,2 and 2-alkylidenepyrroli-
dines3,4 represent important synthetic building blocks for
the synthesis of pharmacologically relevant natural prod-
ucts and natural product analogues. The exocyclic double
bond of 2-alkylidenetetrahydrofurans has been function-
alized by cycloaddition reactions,1a–1d nucleophilic addi-
tions,1e,f cyclopropanations1g or hydrogenations.1h,5h,i 2-
Alkylidenetetrahydrofurans are direct precursors of tet-
rahydrofuran natural products, such as methyl nonactate.5

In addition, they were successfully transformed into natu-
rally occurring spiroketals, such as chalcogran.6 Recently,
we have reported the functionalization of 2-alkylidenetet-
rahydrofurans by lithiation and subsequent alkylation.7

Herein, we wish to report palladium-catalyzed cross-cou-
pling reactions of 2-alkylidenetetrahydrofurans and 2-
alkylidenepyrrolidines. This methodology allows a con-
venient functionalization of the exocyclic double bond
and offers new synthetic vistas.

Our starting point was the development of a method for
the bromination of the exocyclic double bond of 2-alkyl-
idenetetrahydrofurans.8 The required starting materials,
tetrahydrofurans 2a–c, were prepared by the recently
reported cyclization of 1-bromo-2-chloroethane with the
dianions of tert-butyl, methyl and ethyl acetoacetate
(Scheme 1).9

The reaction of 2a–c with NBS (1.3 equiv) resulted in
selective bromination of the double bond and formation of
the desired products 3a–c. Bromination of both the double
bond and carbon C-3 was observed in the reaction of 2c
with an excess of NBS (3.0 equiv); the dibrominated prod-
uct was isolated in 93% yield (E-isomer: 70%, Z-isomer:
23%). The employment of other bromination reagents
(e.g. Br2) was unsuccessful. During the optimization, the
reaction time (3 h), temperature (reflux) and solvent
(CCl4) proved to be important parameters.10

Palladium-catalyzed cross coupling reactions of 3a,b
were studied (Scheme 1, Table 1). Stille reactions of 3a
with Me3SnPh or Bu3SnPh proved unsuccessful under a
variety of conditions. In contrast, the Suzuki reaction of
3a with PhB(OH)2 in the presence of Pd(PPh3)4 (3 mol%)
afforded the desired 2-alkylidenetetrahydrofuran 4a. The
best yields (up to 87%) were obtained when Pd(PPh3)4,
phenylboronic acid, K3PO4 and dioxane (reflux) were

Table 1 Suzuki Reactions of 2-Alkylidenetetrahydrofurans

4 R Ar Yield (%)a

a t-Bu Ph 87

b t-Bu 4-MeC6H4 88

c t-Bu 4-(MeO)C6H4 77

d t-Bu 4-ClC6H4 87

e t-Bu 2-Thienyl 81

f Me 4-ClC6H4 92

g Me 2-Thienyl 62

a Yields of isolated products, E:Z >98:2

Scheme 1 Functionalization of 2-alkylidenetetrahydrofurans.
Reagents and conditions: i: THF, 78 °C to 20 °C, 14 h, then reflux, 12
h, 2a (R = t-Bu): 76%, 2b (R = Me): 72%, 2c (R = Et): 73%; ii: NBS
(1.3 equiv), CCl4, 3 h, 3a (R = t-Bu): 73%, 3b (R = Me): 84%, 3c
(R = Et): 84%; iii: Pd(PPh3)4 (3 mol%), K3PO4 (1.5 equiv), dioxane,
reflux, 6 h.
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used.11 The reaction of 3a with 4-tolyl-, 4-methoxyphe-
nyl-, 4-chlorophenyl and 2-thienylboronic acid afforded
the functionalized 2-alkylidenetetrahydrofurans 4b–e.
The functionalized products 4f–g were prepared from 3b.
All Suzuki reactions proceeded in good to very good
yields (62–92%) and with very good E-diastereoselectiv-
ity.

Scheme 2 Sequential Suzuki reaction and lactonization. Reagents
and conditions: i: Pd(PPh3)4 (3 mol%), K3PO4 (1.5 equiv), dioxane,
reflux, 6 h; ii: BBr3, CH2Cl2; iii: t-BuOK, H2O.

The application of our methodology to the synthesis of 2-
alkylidenetetrahydrofuran 6, a saturated analogue of the
natural product calycine,12,13 was studied next
(Scheme 2). The reaction of 3b with 2-methoxyphenyl-
boronic acid afforded 5. Sequential treatment of 5 with
BBr3 (CH2Cl2) and t-BuOK (H2O) afforded 6 as a separa-
ble mixture of E/Z-isomers.

Scheme 3 Heck reaction of 3b. Reagents and conditions: i:
Pd(PPh3)4 (3 mol%), Et3N, DMF, 100 °C, 25 h.

Alkenyl substituted 2-alkylidenetetrahydrofurans were
successfully prepared by Heck reactions. For example, the
reaction of 3b with tert-butyl acrylate afforded, under
standard conditions, the desired alkenyl substituted
tetrahydrofuran 7 (Scheme 3).

The known 2-alkylidenepyrrolidine 8 was prepared by re-
action of the dianion 1d with 1-bromo-2-chloroethane to
give isopropyl 6-chloro-1,3-dioxohexanoate, subsequent
displacement of the chloride by treatment with NaN3

(DMSO) and cyclization by treatment with PPh3–THF
(Staudinger–Aza–Wittig reaction).14 The reaction of 8
with NBS–CCl4 gave a separable mixture of 9 (75%) and

10 (19%). The Suzuki reaction of 9 with 4-chloro-
phenylboronic acid afforded the desired Z-configured
pyrrolidine 11 in 87% yield (Scheme 4). All 2-alkyl-
idenepyrrolidines were formed with Z-selectivity, due to
the formation of a stable intramolecular hydrogen bond
NHO.
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Scheme 4 Functionalization of 2-alkylidenepyrrolidine 8, Z:E = 3:1
for all products. Reagents and conditions: i: Br(CH2)2Cl, THF, 78 °C
to 0 °C; ii: NaN3, DMSO, 50 °C, 12 h; iii: PPh3, THF, reflux, 6 h; iv:
NBS (1.3 equiv), CCl4, reflux, 3 h; v: Pd(PPh3)4 (3 mol%), K3PO4 (1.5
equiv), dioxane, reflux, 6 h.
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