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TWO NEW STEREOCHEMICALLY COMPLEMENTARY OXINDOLE SYNTHESES’ 

Ian Flemrng,* Marta Antonletta Loreto, Joseph P. Michael and Ian H. M. Wallace 

(Unlverslty Chemical Laboratory, Lensfreld Road, Cambrtdge CB2 lEW, England) 

Summa_yy-Two routes have been developed for the conversion of ketones to oxlndoles In the 

general sense (3 -4), with norbornanone, the two routes gave dtfferent oxlndoles (22 and 24). 

We have revealed elsewhere2 our Interest In the total syntheses of gelsemine (I), and that 

our plan IS to prepare It from a ketone such as 2. This idea has several attractive features, 

as others have also perceived,3 one of which IS that we are obliged to Invent a synthesis of 

oxindoles rn the general sense ( 3 -4).4 We report here two solutions to this problem, whrch 

have the advantage that they are stereochemlcally complementary 

Route 1 In our first route, the aryl group was attached to the ketones (5) using the 

g-lithioformanillde salt (6), prepared by halogen-metal exchange between n-butyl-llthlum and 

o-bromoformanlllde. Thus reagent IS not Ideal halogen-metal exchange appears to be faster than 

the deprotonatlon of the amide, so that the first-formed intermediate quenches Itself. 6.6 

Nevertheless, this IS mrnimtsed at -lOSo, and we got workable yields (37-568) of the alcohols 

(7) from enollsable and non-enolrsable ketones, when we used o-bromoformanllrde and the 

ketone in a ratio of 1 1 In the case of adamantanone, we made some attempt to optrmlse the 

yield, and found that a 4 1 ratio gave conspicuously better results,7 based on adamantanone, 

presumably because there was more of the reagent (6) actually present The alcohols (7) 

reacted with cyanide Ion In DMF, without the need for acid catalysis, to give the aminonltrlles 

(II). With adamantanone as starting material, we Isolated lla directly by crystallrsatlon, but 

wrth the other ketones, we founa it easier to Isolate the product after chromatography as the 

amlnolndolenrnes ( 12 b -d). Either the aminonitrile (lla) or the amrnolndolenlnes ( 12b -a) gave 

the corresponding oxindoles (I 3)* in high yield when their hydrochlorldes were heated In 

water. 
9 

The overall yield from adamantanone was 79% However, when the ketones were 

enolisable, the aniline-alkenes (10) were major by-products in the key step ( 9 - 11 ) We 
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speculate that the formyl group 
10 

IS transferred from nitrogen to oxygen (7 -8). and that the 

tertiary o-amlnobenzyl formate (8) lonlses to a highly stablllsed catlonlc Intermediate (9). which 

captures cyanide Ion ( 9-11 ) or loses a proton ( 9 -IO), perhaps by a [l ,51-slgmatropic shift 

to nitrogen. Fortunately, this wrll not be a problem In the gelsemlne synthesrs 

Route 1 
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c cyclohexanone c 56% 
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Route 2 

1. AIC13, CH2C12 Ma) 

> 

2. MCPBA or TFA, CH2C12 

200, IS mln (15b) 

12 b 88% 
c 8% 
d 44% 

14 a cyclohexanone 
b norbornanone 

15a 59% 
b 71% 

Route 2 In the second route, we prepared the epoxldes (15) in two steps from 

o-fluorobenzyl bromide and the ketones (14). and then rearranged the epoxldes In acid (15-16 

+17). In the cyclohexanone series, aryl migration was the major pathway (3 1). but, in the 

‘NH2 

11 a “100%” 
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< 

19a 39% 
b 34% 

18 a 46% 
b 30% 
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norbornyl serres, hydride shaft was the major pathway (1.5 1) In both cases, much 

experlmentatlon was needed before we found the best conditions. We then converted the 

aldehydes (17) into their amides (18). and these cyclised (18 -19) In a reaction which IS 

remarkable for the easy displacement of fluoride from an unactlvated benzene ring. ” We 

believe this step to have much potential, but we have not examined It In any detail yet, except 

to get the oxindoles (19) in characterlsable amounts. 

Stereochemm In Route 1, the cyanide ion IS the source of the carbonyl group in the 

oxlndole ring, and we expected that It would approach the norbornyl-derived cation (21) from 

the exo direction to give the oxlndole (22) Using this route, we got a single oxlndole, m.p. 

173 s-174.50, which we call the Wallace oxindole. In Route 2, the aryl group IS the second 

carbon to attack the carbon atom of the orlgrnal carbonyl group, and again we expected that it 

would do so mainly from the exo side of the norbornyl ring, leading to the oxindole (24). In 

the event, the aldehyde produced (23) was a 5 1 mixture of stereoisomers, and the major 

isomer’ 2 was brought through to a single oxlndole, m.p. 170.5-171.S”, which we call the Loreto 

oxindole. The two oxlndoles were clearly different (spectroscoplcally13 and mlxed m p. 

133-l 570) The stereochemical assignments were confirmed when we took nuclear Overhauser 

difference spectra In each case we Irradiated at the frequency of Ha, the Wallace oxlndole 

showed strong enhancement only of the doublet from Hb, whereas the Loreto oxindole showed 

enhancement of the doublets both from Hb and from Hc. Thus Route 1 IS appropriate for the 

synthesis of an oxindole in which the carbonyl carbon IS to be attached to the less hindered 

face of a dlastereotoplc ketone group, and Route 2 IS appropriate when the aryl ring IS to be 

attached to the less hlndered face. It remains to be seen which route IS appropriate for the 

synthesis of gelsemlne. 

Stereochemistry 

A 0 

20 

Route 1 

22 Wallace oxindolc 
m.p. 173 S-174.5’ 

23 24 Loreto ox~rxinl~ 
m.p 170 5-171.S” 
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