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TWO NEW STEREOCHEMICALLY COMPLEMENTARY OXINDOLE SYNTHFSES1

*
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Summary-Two routes have been developed for the conversion of ketones to oxindoles in the
general sense (3 ~4), with norbornanone, the two routes gave different oxindoles (22 and 24}.

Ve have revealed elsewherez our interest In the total synthesis of gelsemine (1}, and that
our plan s to prepare 1t from a ketone such as 2. This 1dea has several attractive features,
as others have also percelved,3 one of which 1s that we are obliged to invent a synthesis of
oxindoles 1n the general sense (3-—4].‘J We report here two solutions to this problem, which

have the advantage that they are stereochemically complementary
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Route 1 In our first route, the aryl group was attached to the ketones (B) using the
o-lithioformanilide sait (6), prepared by halogen-metal exchange between n-butyl-lithium and
o-bromoformanihde. This reagent 1s not ideal halogen-metal exchange appears to be faster than
the deprotonation of the amide, so that the first-formed intermediate quenches ltself.s'6
Nevertheless, this 1s minimised at -105°, and we got workable yields (37-56%) of the alcohols
(7) from enolisable and non-enolisable ketones, when we used o-bromoformanilide and the
ketone In a ratio of 1 1 In the case of adamantanone, we made some attempt to optimise the
yteld, and found that a 4 1 ratio gave conspicuously better results,7 based on adamantanone,
presumably because there was more of the reagent (6) actually present The alcohois (7)
reacted with cyanide ion in DMF, without the need for acid catalysis, to give the aminonitriles
(11). With adamantanone as starting material, we isolated 11a directly by crystallisation, but
with the other ketones, we founa 1t easier to i1solate the product after chromatography as the
aminoindolenines (12 b -d). Either the aminonitrile (11a) or the aminoindolenines ( 12b -d) gave
the corresponding oxindoles (13]8 in high yield when their hydrochlorides were heated In
water‘.9 The overall yield from adamantanone was 79% However, when the ketones were
enolisable, the anilino-alkenes (10) were major by-products in the key step (9-11) We
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speculate that the formyl groupm 1s transferred from nitrogen to oxygen (7 -8}, and that the

tertiary o-aminobenzyl formate (8) ionises to a highly stabihised cationic intermediate (9)
captures cyanide ion (9-11) or loses a proton (9-10)
to nitrogen.

, which

, perhaps by a [1,5]-sigmatropic shift
Fortunately, this will not be a problem in the gelsemine synthesis
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Route 2 In the second route, we prepared the epoxides (18) in two steps from
o-fluorobenzyl bromide and the ketones (14), and then rearranged the epoxides in acid {156-+16
+17). In the cyclohexanone series, aryl migration was the major pathway (3 1), but, in the
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norborny! series, hydride shift was the major pathway (1.5 1) In both cases, much
experimentation was needed before we found the best conditions. We then converted the
aldehydes (17) into their amides (18), and these cyclised (18 -19) in a reaction which 1s
remarkable for the easy displacement of fluoride from an unactivated benzene r'mg.11 We
believe this step to have much potential, but we have not examined 1t in any detail yet, except
to get the oxindoles (19) in characterisable amounts.

Stereochemistry In Route 1, the cyanide ion 1s the source of the carbonyl group in the
oxindole ring, and we expected that it would approach the norbornyl-derived cation (21) from
the exo direction to give the oxindole (22) Using this route, we got a single oxindole, m.p.
173 5-174.5°, which we call the Wallace oxindole. In Route 2, the aryl group i1s the second
carbon to attack the carbon atom of the original carbonyl group, and again we expected that 1t
would do so mainly from the exo side of the norbornyl ring, leading to the oxindole (24). In
the event, the aldehyde produced (23) was a 5 1 mixture of stereoisomers, and the major
rsomer12 was brought through to a single oxindole, m.p. 170.5-171.5°, which we call the Loreto
oxindole. The two oxindoles were clearly different (spectroscoplcallyl3 and mixed m p.
133-157°) The stereochemical assignments were confirmed when we took nuclear Overhauser
difference spectra In each case we irradiated at the frequency of Ha' the Wallace oxindole
showed strong enhancement only of the doublet from Hb' whereas the Loreto oxindole showed
enhancement of the doublets both from Hb and from HC. Thus Route 1 1s appropriate for the
synthesis of an oxindole 1n which the carbonyl carbon i1s to be attached to the less hindered
face of a diastereotopic ketone group, and Route 2 s appropriate when the aryl ring is to be
attached to the less hindered face. It remains to be seen which route i1s appropriate for the

synthesis of gelsemine.
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