

Communication

Subscriber access provided by UPSTATE Medical University Health Sciences Library

Nitric Oxide Reactivity of [2Fe-2S] Clusters Leading to HS Generation

Camly T. Tran, Paul G. Williard, and Eunsuk Kim

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/ja505415c • Publication Date (Web): 11 Aug 2014

Downloaded from http://pubs.acs.org on August 17, 2014

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Nitric Oxide Reactivity of [2Fe-2S] Clusters Leading to H₂S Generation.

Camly T. Tran, Paul G. Williard and Eunsuk Kim*

Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States

Supporting Information Placeholder

ABSTRACT: The crosstalk between two biologically important signaling molecules, nitric oxide (NO) and hydrogen sulfide (H₂S), proceeds via elusive mechanism(s). Herein we report the formation of H₂S by the action of NO on synthetic [2Fe-2S] clusters when the reaction environment is capable of providing a formal $H \bullet (e^{-}/H^{+})$. Nitrosylation of $(NEt_4)_2[Fe_2S_2(SPh)_4]$ (1) in the presence of PhSH or ^tBu₃PhOH results in the formation of $(NEt_4)[Fe(NO)_2(SPh)_2]$ (2) and H_2S with the concomitant generation of PhSSPh or ^tBu₃PhO•. The amount of H₂S generated is dependent on the electronic environment of the [2Fe-2S] cluster as well as the type of H• donor. Employment of clusters with electron donating groups or H• donors from thiols leads to a larger amount of H₂S evolution. The 1/NO reaction in the presence of PhSH exhibits biphasic decay kinetics with no deuterium kinetic isotope effect upon PhSD substitution. However, the rates of decay increase significantly with the use of 4-MeO-PhSH or 4-Me-PhSH in place of PhSH. These results provide the first chemical evidence to suggest that [Fe-S] clusters are likely to be a site for the crosstalk between NO and H₂S in biology.

Hydrogen sulfide $(H_2S)^1$ has been increasingly recognized as an important signaling molecule in cardiovascular, immune and neurological functions, which in many aspects is similar to nitric oxide (NO),² another wellknown signaling molecule. Studies have revealed a number of biological mechanisms for the crosstalk between NO and H₂S that may explain some of the overlapping functions.³ For example, NO and H_2S are mutually dependent on each other's presence in order to exert their angiogenic and vasorelaxant effects via converging their actions at the second messenger cGMP; NO generates cGMP by activating soluble guanylyl cyclase whereas H₂S delays the degradation of cGMP by inhibiting phosphodiesterase-5.4 The manner by which NO and H₂S communicate with each other, however, remains largely elusive. Efforts to gain chemical insight into this crosstalk have been made, which includes studies of the reaction of H_2S with nitroprusside,⁵ S-nitrosothiols,⁶ or peroxynitrite (ONOO⁻).⁷

Inspired by the active discussions on the crosstalk between NO and H₂S, our group has begun studying the influence of the reaction environment on the formation of H₂S from [Fe-S] clusters following nitrosvlation⁸ because iron-sulfur proteins are one of the main reaction sites for NO.9 Upon nitrosylation, most [Fe-S] clusters are degraded forming iron-nitrosyl species. While different types of iron-nitrosyls such as monomeric dinitrosyl iron complexes (DNICs)¹⁰ and Roussins' red esters¹¹ have been identified as biologically relevant reaction products, the fate of the bridging sulfides (S^{2-}) during cluster modification is less clear. There are only two systems, the [4Fe-4S] containing Wbl and FNR regulatory proteins, for which the final S-containing reaction products have been identified as sulfane (S^0) and sulfide (S^{2-}) .¹² Reported here are synthetic modeling studies that suggest H₂S is a likely reaction product generated from nitrosylation of prototypical [2Fe-2S] clusters in the cellular environment.

It has long been known that synthetic [2Fe-2S] clusters react with NO to yield $\{Fe(NO)_2\}^9$ dinitrosyl iron complexes and elemental sulfur.^{13,14} As previously reported, ^{14b,c} we too observe that gaseous NO or a chemical NO donor, Ph₃CSNO, degrades a diferric cluster, (NEt₄)₂[Fe₂S₂(SPh)₄] (1), into the $\{Fe(NO)_2\}^9$ DNIC, (NEt₄)[Fe(NO)₂(SPh)₂] (2) (path a, Scheme 1). During

the conversion, the bridging sulfides of 1 provide the reducing equivalents to the $\{Fe(NO)_2\}$ unit and are released as elemental sulfur (S_x) at the end of the reaction. The amount of elemental sulfur generated can be quantified by GC-MS following conversion to its triphenylphosphine adduct, S=PPh₃.¹⁵

We report here that the NO reactivity of $(NEt_4)_2[Fe_2S_2(SPh)_4]$ (1) in the presence of thiol significantly changes the fate of the bridging sulfides. When the reaction of NO_(g) and 1 was carried out in the presence of phenylthiol (10 equiv), the same DNIC, $(NEt_4)[Fe(NO)_2(SPh)_2]$ (2), was produced as the reaction product of 1/NO. However, only small amounts (6-7%) of elemental sulfur were found from the reaction in the presence of PhSH. Complementary to this, we observed that an additional sulfur-containing product, H₂S, was generated. The amount of H₂S was determined by employing a turn-on fluorescence sensor, Sulfidefluor-1 (SF1)¹⁶ which is known to be selective for H₂S over other reactive sulfur, oxygen, and nitrogen species. The headspace gas of the reaction flask containing 1/NO in the presence and absence of PhSH was transferred to another flask possessing an acetonitrile solution of SF1 whose fluorescence spectrum was subsequently analyzed (Figure 1). Quantitative analysis in the use of a calibration curve created for a range of H₂S concentrations¹⁵ revealed that ca 80% of the bridging sulfides in 1 were released as H₂S in the presence of phenylthiol whereas no such product was produced in the absence of externally added phenylthiol (Scheme 1, Figure 1). Additionally, we observed that the reaction of 1/NO in the presence of PhSH produced nearly equimolar amounts of diphenyl disulfide and H₂S (i.e., 1:1 ratio of H₂S to PhSSPh).¹⁵ This suggests that externally added phenylthiol acts as a formal H• (e^{-}/H^{+}) donor to generate 2 and H₂S. In order to interrogate the generality of this thiol effect on H₂S production, we investigated the reactions of 1 and NO in the presence of other thiols such as EtSH and ^tBuSH.¹⁷ In all cases, the reaction produced 2 and H₂S, where the amounts of H₂S generated were essentially identical to that of reaction 1/NO with PhSH.¹⁵

Figure 1. Fluorescence spectra of a solution of Sulfideflour-1 upon addition of the headspace gas from the reaction of $(NEt_4)_2[Fe_2S_2(SPh)_4]$ (1) and NO in the absence (green dashed) and the presence (blue solid) of PhSH.

In light of the H₂S production from nitrosylation of $(NEt_4)_2[Fe_2S_2(SPh)_4]$ (1) in the presence of thiol, we next studied the reaction of 1 and NO_(g) in the presence of 2,4,6-tri-tert-butylphenol (^tBu₃PhOH), another wellestablished H• (e^{-}/H^{+}) donor with comparable bond dissociation free energy to PhSH (80.6 vs. 76.9 kcal/mol in DMSO).¹⁸ Similar to the reaction with thiol, nitrosylation of **1** in the presence of excess (10 equiv) ^tBu₃PhOH led to a conversion of 1 to $(NEt_4)[Fe(NO)_2(SPh)_2]$ (2) during which H₂S (55%) and elemental sulfur (6%) were produced.¹⁹ In order to confirm that ^tBu₃PhOH provides H^{\bullet} for the generation of H_2S and 2, EPR spectroscopy was carried out on the reaction mixtures at room temperature (Figure 2). In the absence of ^tBu₃PhOH, the *in* situ generated products from 1 and Ph₃CSNO (4 equiv), display a five-line EPR signal at $g_{av} = 2.029$ and $A_{N(NO)}$ = 2.4 G as expected for the S = $\frac{1}{2}$ system of an {Fe(NO)₂}⁹ DNIC (Figure 2B).^{14c,20} The EPR spectrum of the reaction products of 1 and Ph₃CSNO in the presence of ^tBu₃PhOH (10 equiv), however, displays an additional radical signal at g = 2.004, indicating the formation of a radical ^tBu₃PhO• (Figure 2C),²¹ which supports the role of ^tBu₃PhOH as a H• (e^{-}/H^{+}) donor.²²

Figure 2. X-band EPR spectra obtained from reaction of (A) **1** and ^tBu₃PhOH, (B) **1** and Ph₃CSNO, and (C) **1** and Ph₃CSNO in the presence of ^tBu₃PhOH in MeCN at 298 K.

The varying amounts of H₂S generated from 1 and NO by two different H• (e^{-}/H^{+}) donors led us to study other factors that would play a role in H₂S generation. A series of [2Fe-2S] clusters with para-substituted phenylthiolate, $(NEt_4)_2[Fe_2S_2(SPh-4-R)_4]$, has been prepared, where R = Cl (3), Me (4), and OMe (5). Synthesis of these clusters^{14c,23} and the corresponding DNICs,^{14b,c} (NEt_4) [Fe(NO)₂(SPh-4-R)₂] (6-8), are known except the methoxy analogs. Compound 5 was synthesized via a ligand exchange reaction of $(NEt_4)_2[Fe_2S_2(indolate)_4]$ with 4-methoxythiophenol in a manner similar to the synthesis of 1 and 4 reported by Meyer.^{23b} The X-ray crystal structure of 5 (Figure S1) reveals the bond metrics for the Fe_2S_2 rhomb of **5** to be almost identical to those reported for **1**, **3**, and **4**.^{15,24} However, small changes in the $E_{1/2}$ for $[2Fe-2S]^{2+/1+}$ were observed in the series (Table 1) indicating that the ligands affect the electronic structure of the [2Fe-2S] center. All of the [2Fe-2S] clusters with para-substituted phenylthiolate react with NO(g) or Ph₃CSNO to yield DNICs (6-8) in the absence or the presence of ^tBu₃PhOH, but the amount of H₂S generated from the reaction in the pres1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

ence of ^tBu₃PhOH varies depending on the substituents of the cluster. Clusters having more negative reduction potentials with electron donating groups produce larger amounts of H₂S ($3 \le 1 \le 4$) (Table 1), indicating [2Fe-2S] centers in an electron-rich environment favors H₂S generation.

Table 1. Ligand electronic effect on the H_2S formation from NO/[Fe₂S₂(SPh-4-R)₄]²⁻ in the presence of ^tBu₃PhOH.

4-Substituent (R)	% H ₂ S	$E_{1/2}^{a,b}$
Cl (3)	24±4	-1.36
H(1)	55±7	-1.45
Me (4)	68±5	-1.49
MeO (5)	87±7	-1.50

^a Potentials are in V vs $Cp_2Fe^{+/0}$ in MeCN at 25° ^b Potentials for 1, 3, and 4 in DMF are known.^{24a}

One of the difficulties in synthetic modeling studies of NO reactivity with [2Fe-2S] clusters lies in the concentration-dependent reactivity. As previously reported by Lippard and coworkers in detail, 14c a DNIC and S_x are generated from nitrosylation of $(NEt_4)_2[Fe_2S_2(SPh)_4]$ (1) only in a concentrated solution. In contrast, dilute reaction conditions (e.g., 50 µM) generate a completely different iron product known as Roussin's black salt (RBS), $[Fe_4S_3(NO)_7]^-$, even though RBS is hardly observed biologically.²⁵ This reactivity pattern disappears when excess thiol is present in the reaction medium where the bridging sulfides can be released as H₂S. Even at a concentration of 50 µM of 1, we observe that nitrosylation of $(NEt_4)_2[Fe_2S_2(SPh)_4]$ (1) leads to the formation of DNIC, (NEt₄)[Fe(NO)₂(SPh)₂] (2) when a large excess of PhSH (15 mM) is provided in the reaction medium.

Figure 3. (A) UV-vis spectral changes for the conversion of **1** (blue) to **2** (orange) upon addition of Ph₃CSNO (6 equiv) in the presence PhSH (100 equiv) at 0 °C over 70 min. (B) The natural log of A₄₈₀ plotted against time at 0 °C, where A₀ and A_t = absorbance at 480 nm at t = 0 and t min, respectively. (C) Comparison of decay kinetic traces for the conversion of **1** to **2** upon addition of Ph₃CSNO (6 equiv) in the presence 100 equiv of PhSH (blue), 4-Me-PhSH (red) and 4-MeO-PhSH (green) at -15 °C. The initial concentration of **1** is 3.6 x 10⁻⁴ M in acetonitrile for all.

Our efforts to detect a reaction intermediate were in vain. Upon nitrosylation in the presence of 100 equiv of PhSH, we only observed a steady transformation of $(NEt_4)_2[Fe_2S_2(SPh)_4]$ (1) to $(NEt_4)[Fe(NO)_2(SPh)_2]$ (2) even at low temperatures, Figure 3A. The decay in absorbance at 480 nm from 1 is found to be biphasic where the first phase is faster than the second, which can be fit to two consecutive first-order decays to give $k_1 =$ 0.168(19) min⁻¹ and $k_2 = 0.0087(16)$ min⁻¹ at 0 °C (Figure 3B). No deuterium kinetic isotope effect was observed when PhSH was replaced by PhSD, indicating proton transfer is not involved in the rate-limiting step. However, the presence of water, which can potentially compete with PhSH or NO in binding to Fe,²⁶ influences the decay rate. When small amounts of H₂O (700 equiv per 1) were added to the reaction medium, the first decay process was slowed down by ~1.5 fold at 0 °C (not shown).¹⁵ The rates of decay were also found to be sensitive to the electronic nature of H• donors. The employment of para-substituted phenylthiol with electron donating MeO and Me groups led to a notably faster decay, although neither the starting cluster 1 nor the final product 2 have reactivity with these substituted phenylthiols. At -15 °C at which the reaction of 1/NO in the presence of PhSH barely begins to proceed, the same reaction in the presence of 4-MeO-PhSH and 4-Me-PhSH were completed in less than 10 min (Figure 3C).

Our current working model for a plausible reaction pathway is shown in Scheme 2, in which the very last step, the conversion of 11 to 2, is adopted from a known reaction.^{14c} The presence of H• donors such as thiols and phenols in the environment is crucial in generating H_2S . However, the H• donors tested here have no reactivity with the starting [2Fe-2S] clusters. This suggests that the initial reaction between NO and the [2Fe-2S] clusters would likely produce an oxidizing iron-nitrosyl intermediate such as 9 (Scheme 2) that is capable of abstracting a formal H• (e^{-}/H^{+}) from phenylthiol.²⁷ The increased decay rates upon employing phenylthiol with electrondonating substituents lead us to conjecture that the reaction mechanism must have multiple electron transfer steps and reduction of iron nitrosyl moieties by thiol or thiolate such as the conversions of 9 to 10 and 11 to 2 is likely important in determining the overall reaction rates.

^a Each Fe has two additional thiolate ligands (not shown).

The present studies demonstrate that the degradation of prototypical [2Fe-2S] clusters by NO in the presence of H• (e^{-}/H^{+}) produces H₂S. Proton-coupled electron transfer (PCET) by cellular H• donors such as cysteine and tyrosine is prevalent in biology. The importance of PCET reactivity of iron-sulfur clusters has been widely appreciated in the systems such as CO-ligated [Fe-S] hydrogeneases²⁸ and the Reiske proteins.²⁹ Our results here strongly suggest that NO reactivity of prototypical cysteinate bound [Fe-S] clusters is likely coupled to PCET chemistry, in which local protein residues or the millimolar concentrations of intracellular glutathione³ likely play a role in [Fe-S] degradation by NO leading to the formation of H₂S. Therefore, it is conceivable that iron-sulfur clusters might be one of the intersecting sites that facilitate crosstalk between NO and H₂S.

ASSOCIATED CONTENT

Supporting Information. Experimental details and characterizations, CIF for **5**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

eunsuk_kim@brown.edu

Notes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was supported by the NSF (CHE 1254733).

REFERENCES

(1) (a) Wang, R. *Physiol. Rev.* **2012**, *92*, 791. (b) Li, L.; Rose, P.; Moore, P. K. *Annu. Rev. Pharmacol. Toxicol.* **2011**, *51*, 169.

(2) (a) Murad, F. *Angew. Chem. Int. Ed.* **1999**, *38*, 1857. (b) Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D. A.; Stella, A. M. *Nat. Rev. Neurosci.* **2007**, *8*, 766.

(3) Kolluru, G. K.; Shen, X.; Kevil, C. G. *Redox biology* 2013, *1*, 313.
(4) Coletta, C.; Papapetropoulos, A.; Erdelyi, K.; Olah, G.; Modis, K.; Panopoulos, P.; Asimakopoulou, A.; Gero, D.; Sharina, I.; Martin,

E.; Szabo, C. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 9161.

(5) (a) Filipovic, M. R.; Eberhardt, M.; Prokopovic, V.; Mijuskovic, A.; Orescanin-Dusic, Z.; Reeh, P.; Ivanovic-Burmazovic, I. J. Med. Chem. 2013, 56, 1499. (b) Quiroga, S. L.; Almaraz, A. E.; Amorebieta, V. T.; Perissinotti, L. L.; Olabe, J. A. Chem. Eur. J. 2011, 17, 4145. (c) Yong, Q. C.; Cheong, J. L.; Hua, F.; Deng, L. W.; Khoo, Y. M.; Lee, H. S.; Perry, A.; Wood, M.; Whiteman, M.; Bian, J. S. Antioxid. Redox Signal 2011, 14, 2081.

(6) (a) Filipovic, M. R.; Miljkovic, J.; Nauser, T.; Royzen, M.; Klos, K.; Shubina, T.; Koppenol, W. H.; Lippard, S. J.; Ivanovic-Burmazovic, I. J. Am. Chem. Soc. 2012, 134, 12016. (b) Ondrias, K.; Stasko, A.; Cacanyiova, S.; Sulova, Z.; Krizanova, O.; Kristek, F.; Malekova, L.; Knezl, V.; Breier, A. Pflugers Archiv: Eur. J. Physiol. 2008, 457, 271. (c) Teng, X.; Scott Isbell, T.; Crawford, J. H.; Bosworth, C. A.; Giles, G. I.; Koenitzer, J. R.; Lancaster, J. R.; Doeller, J. E.; D, W. K.; R, P. P. Methods Enzymol. 2008, 441, 161.

(7) (a) Whiteman, M.; Armstrong, J. S.; Chu, S. H.; Jia-Ling, S.; Wong, B. S.; Cheung, N. S.; Halliwell, B.; Moore, P. K. *J. Neurochem.* **2004**, *90*, 765. (b) Filipovic, M. R.; Miljkovic, J.; Allgauer, A.; Chaurio, R.; Shubina, T.; Herrmann, M.; Ivanovic-Burmazovic, I. *Biochem. J.* **2012**, *441*, 609. (8) Tran, C. T.; Kim, E. Inorg. Chem. 2012, 51, 10086.

(9) (a) Hyduke, D. R.; Jarboe, L. R.; Tran, L. M.; Chou, K. J.; Liao, J. C. *Proc. Natl. Acad. Sci. U.S.A.* **2007**, *104*, 8484. (b) Landry, A. P.; Duan, X.; Huang, H.; Ding, H. *Free. Radic. Biol. Med.* **2011**, *50*, 1582

(10) (a) Ding, H.; Demple, B. *Proc. Natl. Acad. Sci. U.S.A.* **2000**, *97*, 5146.(b) Rogers, P. A.; Ding, H. *J. Biol. Chem.* **2001**, *276*, 30980.

(11) (a) Cruz-Ramos, H.; Crack, J.; Wu, G.; Hughes, M. N.; Scott,
C.; Thomson, A. J.; Green, J.; Poole, R. K. *EMBO J.* 2002, *21*, 3235.
(b) Tinberg, C. E.; Tonzetich, Z. J.; Wang, H.; Do, L. H.; Yoda, Y.;

Cramer, S. P.; Lippard, S. J. J. Am. Chem. Soc. 2010, 132, 18168. (12) (a) Crack, J. C.; Smith, L. J.; Stapleton, M. R.; Peck, J.; Wat-

(12) (a) Crack, J. C., Shihi, E. J., Stapicton, W. K., Feck, J., Wal-mough, N. J.; Buttner, M. J.; Buxton, R. S.; Green, J.; Oganesyan, V. S.; Thomson, A. J.; Le Brun, N. E. J. Am. Chem. Soc. 2011, 133, 1112. (b) Crack, J. C.; Stapleton, M. R.; Green, J.; Thomson, A. J.; Le Brun, N. E. J. Biol. Chem. 2013, 288, 11492.

(13) {Fe(NO)₂}⁹ follows the Enemark-Feltham notation. Enemark, J. H.; Feltham, R. D. *Coord. Chem. Rev.* **1974**, *13*, 339.

(14) (a) Tsai, M. L.; Chen, C. C.; Hsu, I. J.; Ke, S. C.; Hsieh, C. H.;
Chiang, K. A.; Lee, G. H.; Wang, Y.; Chen, J. M.; Lee, J. F.; Liaw,
W. F. *Inorg. Chem.* 2004, 43, 5159. (b) Tsai, F. T.; Chiou, S. J.; Tsai,
M. C.; Tsai, M. L.; Huang, H. W.; Chiang, M. H.; Liaw, W. F. *Inorg. Chem.* 2005, 44, 5872. (c) Harrop, T. C.; Tonzetich, Z. J.; Reisner, E.;
Lippard, S. J. J. Am. Chem. Soc. 2008, 130, 15602. (d) Lu, T. T.;
Huang, H. W.; Liaw, W. F. *Inorg. Chem.* 2009, 48, 9027.

(15) See the Supporting Information

(16) Lippert, A. R.; New, E. J.; Chang, C. J. J. Am. Chem. Soc. 2011, 133, 10078.

(17) BDFE (gas phase) for EtSH, ¹BuSH, and PhSH are 79.1, 78.4, and 75.3 kcal/mol, respectively.¹⁸ The pKa values of EtSH and PhSH (in H_2O) are 10.6 and 6.6.¹⁸ Less acidic properties of EtSH and ¹BuSH than PhSH are important in ensuring no ligand substitution on **1**.

(18) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Chem. Rev. 2010, 110, 6961.

(19) We were unable to identify the remaining sulfur-containing byproduct(s) that should constitute \sim 40%.

(20) (a) Tsai, M. L.; Liaw, W. F. *Inorg. Chem.* **2006**, *45*, 6583. (b) Huang, H. W.; Tsou, C. C.; Kuo, T. S.; Liaw, W. F. *Inorg. Chem.* **2008**, *47*, 2196.

(21) (a) Manner, V. W.; Markle, T. F.; Freudenthal, J. H.; Roth, J. P.; Mayer, J. M. *Chem. Commun.* **2008**, 256. (b) Zdilla, M. J.; Dexheimer, J. L.; Abu-Omar, M. M. *J. Am. Chem. Soc.* **2007**, *129*, 11505.

(22) Spin quantification of the g = 2.004 signal constitutes only *ca* 20% of what was expected, which may be due to reactivity of ¹Bu₃PhO• with unidentified byproducts. The thiyl radical, Ph₃CS•, is not detectable under the current experimental conditions.

(23) (a) Reynolds, J. G.; Holm, R. H. *Inorg. Chem.* **1980**, *19*, 3257.
(b) Ballmann, J.; Sun, X.; Dechert, S.; Schneider, B.; Meyer, F. *Dalton Trans.* **2009**, 4908.

(24) (a) Mayerle, J. J.; Denmark, S. E.; Depamphilis, B. V.; Ibers, J. A.; Holm, R. H. *J. Am. Chem. Soc.* **1975**, *97*, 1032. (b) Jinhua, C.; Changneng, C. H. *Jiegou Huaxue* **1985**, *4*, 199. (c) Jinhua, C.; Changneng, C. H. *Jiegou Huaxue* **1988**, *7*, 43

(25) Tonzetich, Z. J.; Wang, H.; Mitra, D.; Tinberg, C. E.; Do, L. H.; Jenney, F. E., Jr.; Adams, M. W.; Cramer, S. P.; Lippard, S. J. *J. Am. Chem. Soc.* **2010**, *132*, 6914.

(26) Although water has different properties from NO as a ligand, it is known to affect NO binding kinetics of ferric ion. See references in Ford, P. C.; Lorkovic, I. M. *Chem. Rev.* **2002**, *102*, 993.

(27) The outer-sphere oxidation of phenylthiol by **9** is also plausible although such a possibility is not included in Scheme 2.

(28) (a) Greco, C.; Bruschi, M.; Fantucci, P.; Ryde, U.; De Gioia, L. J. Am. Chem. Soc. **2011**, 133, 18742. (b) Olsen, M. T.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. **2010**, 132, 17733.

(29) (a) Zu, Y.; Fee, J. A.; Hirst, J. J Am Chem Soc 2001, 123, 9906. (b) Hsueh, K. L.; Westler, W. M.; Markley, J. L. J. Am. Chem. Soc. 2010, 132, 7908. (c) Albers, A.; Demeshko, S.; Dechert, S.; Saouma, C. T.; Mayer, J. M.; Meyer, F. J. Am. Chem. Soc. 2014, 136, 3946.

(30) Hwang, C.; Sinskey, A. J.; Lodish, H. F. Science 1992, 257, 1496.

