

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 5735-5737

Tetrahedron Letters

Synthesis and structure of [2.2]paracyclophanes incorporating alkyne units in the extended linear chain

Lucio Minuti,^{a,*} Aldo Taticchi,^{a,*} Assunta Marrocchi,^a Selvaggia Landi^a and Eszter Gacs-Baitz^b

^aDipartimento di Chimica, Università degli Studi di Perugia, via Elce di Sotto 8, 06123 Perugia, Italy ^bCentral Institute for Chemistry, Hungarian Academy of Sciences, PO Box 17, H-1525 Budapest, Hungary

> Received 27 May 2005; revised 9 June 2005; accepted 14 June 2005 Available online 7 July 2005

Abstract—The novel [2.2] paracyclophanes 4–7 with an extended π -conjugation due to the presence of a linear arylethynyl chain have been synthesized by the Pd-catalyzed Sonogashira coupling reaction. © 2005 Elsevier Ltd. All rights reserved.

As a continuation of our interest in [2.2]paracyclophane chemistry,¹ we have undertaken a research project on the synthesis of new cyclophane derivatives containing ethynyl groups. Linear arylethynyl molecules with extended π -conjugation are of considerable interest due to their potential applications in electroluminescence,² liquid crystallinity,³ optoelectronics,⁴ and organic semiconductors.⁵ The aim of the project is that of using [2.2]paracyclophane (PCP), which has a unique structure with two strained and facing benzene rings, as building block for the construction of extended π -systems containing three-dimensional (PCP)-, linear (acetylene triple bond)-, and planar (benzene rings)- π electron systems. The triple bonds are employed as conjugation bridges, and phenyl groups and [2.2]paracyclophane as π -centers.

In this article, we report the preliminary results of a study on the synthesis of [2.2]paracyclophane derivatives containing one or two *para*-connected carbon–carbon triple bonds. These molecules have a three-dimensional π -system comparable to that of fullerene.

4-Ethynyl-[2.2]paracyclophane (3) was the starting material used to synthesize the target compounds 4–7. It was prepared by coupling trimethylsilylacetylene with

1, R = Br; 2, R = $-C \equiv C - SiMe_3$; 3, R = $-C \equiv CH$

Scheme 1.

4-bromo[2.2]paracyclophane (1) followed by the removal of the alkyne-protecting group^{6a} (TMS) (Scheme 1). Compound **3** had been previously prepared by Hopf and co-workers^{6b} by another route starting from 4-formyl[2.2]paracyclophane. Compounds **4**–7 were obtained by Pd-catalyzed Sonogashira⁸ reaction between the commercially available aryliodides **8** and **9** and the diaryliodides⁹ **12** and **13** (Scheme 2).

Whereas the couplings of **3** with aryliodides **8** and **9** were carried out¹² at 75 °C for 20 h, the reactions between **3** and diaryliodides **12** and **13** occurred under milder conditions, ¹² at 25 °C for 18 h. All attempts to carry out the Sonogashira reaction of 4-bromo[2.2]paracyclophane (1) with *p*-ethynylaniline (**10**) and *p*-ethynylanisole (**11**) gave worse results: only a 37% yield was obtained in the former case and no reaction occurred in the latter. The well-known relative reactivity of aryl halides, Ar-I \gg Ar-Br > Ar-Cl, might explain these results. The structures of the [2.2]paracyclophanes **4**–**7** were proved unambiguously by analysis of their NMR spectra (¹H and ¹³C) and elemental analysis.

Keywords: [2.2]Paracyclophanes; Sonogashira reaction; Diarylacetylenes; NMR spectroscopy.

^{*} Corresponding authors. Tel.: +39 075 5855537; fax: +39 075 5855560 (A.T.); e-mail: taticchi@unipg.it

^{0040-4039/\$ -} see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.06.065

Scheme 2.

In conclusion, a synthetic route to prepare a new series of molecules based on [2.2]paracyclophane moiety as the key building block and containing an extended π -delocalization has been established. The synthesis of new linearly functionalized [2.2]paracyclophanes containing aromatic carbocycles and/or heterocycles as π -centers connected by acetylenic triple bonds, as well as the study of their properties, is currently in progress.

Acknowledgements

L.M., A.T., A.M., and S.L. are grateful to the M.I.U.R. (Ministero dell'Istruzione, dell'Università e della Ricerca) Rome, Italy, for the financial support. E.G.-B. thanks the Hungarian Academy of Sciences.

References and notes

 Inter alia: (a) Taticchi, A.; Minuti, L.; Marrocchi, A.; Lanari, D. Recent Res. Devel. Organic Chem. 2004, 477– 496; (b) Minuti, L.; Taticchi, A.; Marrocchi, A.; Lanari, D.; Gacs-Baitz, E. Tetrahedron Lett. 2005, 46, 949–950; (c) Taticchi, A.; Minuti, L.; Lanari, D.; Marrocchi, A.; Gacs-Baitz, E. Tetrahedron 2004, 60, 11759–11764; (d) Minuti, L.; Taticchi, A.; Lanari, D.; Marrocchi, A.; Gacs-Baitz, E. Tetrahedron: Asymmetry 2003, 14, 2775–2779.

- (a) Blasse, G.; Grabmaier, B. C. Luminescent Materials; Springer: Berlin, 1994; (b) Miyata, S.; Nalwa, H. S. Organic Electroluminescence Materials and Devices; Gordon-Breach: Amsterdam, 1997; (c) Chen, J. P.; Ueno, K; Suzuki, K. U.S. Patent 2004110027, 2004.
- (a) Nehring, J.; Amstutz, H.; Holmes, P. A.; Nevin, A. Appl. Phys. Lett. 1987, 51, 1283–1284; (b) Witteler, H.; Lieser, G.; Wegner, G.; Schulze, M. Makromol. Chem. Rapid Commun. 1993, 14, 471–480.
- (a) Bunz, U. H. F. *Chem. Rev.* 2000, 100, 1605–1644; (b) Montali, A.; Bastiaansen, C.; Smith, P.; Eeder, C. *Nature* 1998, 392, 261–264; (c) Weder, C.; Sarwa, C.; Montali, A.; Bastiaansen, C.; Smith, P. *Science* 1998, 279, 835–837.
- Hu, W.; Gompf, B.; Pflaum, J.; Schweitzer, D.; Dressel, M. Appl. Phys. Lett. 2004, 84, 4720–4722.
- 6. (a) Trimethylsilyl[2.2]paracyclophane (2) was prepared in 90% yield starting from 4-bromo[2.2]paracyclophane (1)^{7a} according to a previously described^{7b} procedure used to prepare a diethynyl[2.2]paracyclophane. Data for compound 2: white crystals; mp 138–139 °C (MeOH); ¹H NMR δ 0.34 (s, 9H, SiMe₃), 2.84 (ddd, 1H, *J* = 13.0, 10.5, 5.6 Hz, H-2), 2.9–3.15 (m, 5H, H-1, H_s-9, H_s-10), 3.22 (m, 1H, H-1), 3.60 (ddd, 1H, *J* = 13.0, 10.2, 2.6 Hz, H-2), 6.45 (d, 1H, *J* = 8.0 Hz, H-8), 6.47–6.54 (m, 5H, H_s-12, H_s-13, H-16), 6.50 (dd, 1H, *J* = 8.0, 1.7 Hz, H-7), 6.51 (d, 1H, *J* = 1.7 Hz, H-5), 7.02 (dd, 1H, *J* = 7.8, 1.7 Hz, H-15); ¹³C NMR δ 0.36 (SiMe₃), 34.2 (C-2), 34.7 (C-1), 35.3, 35.7 (C9, C-10), 97.8 (C-1'), 106.0 (C-2'), 125.1 (C-4), 129.9 (C-15), 132.6, 132.9, 133.1, 133.6, 134.0 (C-7, C-8, C-12, C-13, C-16), 137.4 (C-5), 139.6 (C-6), 139.7, 139.8 (C-11, C-14),

143.2 (C-3); MS *m/e* (rel. int.) 104 (38), 141 (15), 185 (61), 200 (100), 304 (M⁺, 53); UV–vis (CHCl₃) [λ_{max} nm (log ε)]: 284 (2.76); Anal. Calcd for C₂₁H₂₄Si: C, 82.83; H, 7.94. Found: C, 82.81; H, 7.95.(b) Bondarenko, L.; Dix, I.; Hinrichs, H.; Hopf, H. *Synthesis* **2004**, 2751–2759.

- (a) Ernst, L.; Wittkowski, L. *Eur. J. Org. Chem.* **1999**, 1653–1663; (b) Morisaki, Y.; Fujimura, F.; Chujo, Y. *Organometallics* **2003**, *22*, 3553–3557.
- (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467–4470; (b) Takahashi, K.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1980, 627– 630; (c) Sonogashira, K. In Metal Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998, Chapter 5.
- 9. Diarylacetylenes **12** and **13** were prepared according to a previously described procedure¹⁰ by Sonogashira coupling between *p*-diiodobenzene and the commercially available *p*-ethynylaniline (**10**) and *p*-ethynylanisole (**11**).^{8b,11} It is noteworthy that in the case of **13** the reaction yield was improved from 65% to 90% by employing Pd(PPh₃)₂Cl₂ and Et₂NH.
- Mongin, O.; Gossauer, A. Tetrahedron 1997, 53, 6835– 6846.
- Elangovan, A.; Yang, S.-W.; Lin, J.-M.; Kao, K.-M.; Ho, T.-I. Org. Biomol. Chem. 2004, 2, 1597–1602.
- 12. General procedure for the Sonogashira reaction of 4ethynyl[2.2]paracyclophane (3) with aryliodides 8, 9 and diaryliodides 12 and 13. The following discussion of the 3-8 reaction is a typical procedure used for all coupling reactions. Dry THF (6 ml), 4-ethynyl[2.2]paracyclophane (3) (0.189 g, 0.81 mmol), triphenylphosphine (0.021 g, 0.08 mmol), CuI (0.008 g, 0.04 mmol), 4-iodoaniline (8) (0.118 g, 0.54 mmol) and the palladium catalyst (0.028 g, 0.04 mmol) were placed in a flask and degassed with Ar. The mixture was heated at 75 °C for 20 h. Then, the solvent was removed under reduced pressure and the residue was chromatographed on silica gel. Elution with petroleum ether/dichloromethane 1:2 afforded 0.145 g (83% yield) of 4 as pale orange crystals; mp 173-174 °C (MeOH); ¹H NMR δ 2.85 (m, 1H, H-2), 2.9–3.15 (m, 5H, H-1, H_s-9, H_s-10), 3.25 (m, 1H, H-1), 3.65 (m, 1H, H-2), 3.81 (br s, 2H, $-NH_2$), 6.42 (d, 1H, J = 7.9 Hz, H-8), 6.44-6.54 (m, 4H, H-7, H-12, H-13, H-16), 6.52 (d, 1H, J = 1.7 Hz, H-5), 6.68 (m, 2H, H-5', H-7'), 7.05 (dd, 1H, J = 7.7, 1.9 Hz, H-15), 7.40 (m, 2H, H-4', H-8'); ¹³C NMR δ 34.5 (C-1), 34.8 (C-2), 35.4, 35.7 (C-9, C-10), 87.9 (C-1'), 93.8 (C-2'), 113.6 (C-3'), 115.1 (C-5', C-7'), 125.8 (C-4), 130.2 (C-15), 132.4, 132.9 (C-7, C-12), 133.0, 133.5 (C-13, C-16, C-4', C-8'), 134.0 (C-8), 137.0 (C-5), 139.6 (C-11), 139.8 (C-6, C-14), 142.3 (C-3), 146.8 (C-6'); MS m/e (rel. int.) 103 (5), 147 (4), 165 (4), 189 (8), 219 (100), 323 (M⁺, 36); UV–vis (CHCl₃) [λ_{max} nm (log ε)]: 276 (3.49); Anal. Calcd for C₂₄H₂₁N: C, 89.12; H, 6.54; N, 4.33. Found: C,

89.34; H, 6.53; N, 4.34. 5: white crystals (95% yield); mp 148–149 °C (MeOH); ¹H NMR δ 2.80 (ddd, 1H, J = 13.0, 10.4, 5.5 Hz, H-2), 2.90-3.10 (m, 5H, H-1, H_s-9, H_s-10), 3.20 (m, 1H, H-1), 3.80 (s, 3H, OMe), 3.58 (ddd, 1H, *J* = 13.0, 10.1, 2.7 Hz, H-2), 6.45–6.55 (m, 3H, H-12, H-13, H-16), 6.47 (d, 1H, J = 7.9 Hz, H-8), 6.52 (dd, 1H, J = 7.9, 1.9 Hz, H-7), 6.53 (d, 1H, J = 1.8 Hz, H-5), 6.86 (m, 2H, H-5′, H-7′), 6.95 (dd, 1H, J = 7.7, 1.8 Hz, H-15), 7.42 (m, 2H, H-4', H-8'); ¹³C NMR δ 34.6 (C-2), 34.8 (C-1), 35.4, 35.7 (C-9, C-10), 55.6 (OMe), 85.7 (C-1'), 93.1 (C-2'), 114.3 (C-5', C-7'), 116.3 (C-3'), 125.5 (C-4), 130.2 (C-15), 132.6, 132.9, 133.1, 133.5, 134.1 (C-7, C-8, C-12, C-13, C-16, C-4', C-8'), 137.1 (C-5), 139.6 (C-6), 139.8, 139.9 (C-11, C-14), 142.5 (C-3), 159.8 (C-6'); MS m/e (rel. int.) 189 (17), 219 (15), 234 (100), 338 (M⁺, 38); UV-vis (CHCl₃) $[\lambda_{\text{max}} \text{ nm}(\log \varepsilon)]$: 335 (4.92); Anal. Calcd for C₂₅H₂₂O: C, 88.72; H, 6.55. Found: C, 89.35; H, 6.58. 6: orange crystals (95% yield); mp 80–81 °C (MeOH); ¹H NMR δ 2.89 (ddd, 1H, J = 13.3, 10.4, 5.3 Hz, H-2), 2.95–3.16 (m, 5H, H-1, H_{s} -9, H_{s} -10), 3.26 (m, 1H, H-1), 3.66 (ddd, 1H, J = 13.3, 10.2, 2.6 Hz, H-2), 3.85 (br s, 2H, NH2), 6.48 (d, 1H, J = 7.8 Hz, H-8), 6.51 (dd, 1H, J = 7.8, 2.0 Hz, H-7), 6.48-6.55 (m, 3H, H-12, H-13, H-16), 6.58 (d, 1H, J = 2.0 Hz, H-5), 6.64 (m, 2H, H-13', H-15'), 7.01 (dd, 1H, J = 7.8, 1.9 Hz, H-15), 7.35 (m, 2H, H-12', H-16'), 7.50-7.53 (m, 4H, H-4', H-5', H-7', H-8'); ¹³C NMR δ 34.6 (C-1), 34.8 (C-2), 35.4, 35.7 (C-9, C-10), 87.5 (C-9'), 91.6 (C-1'), 92.4 (C-10'), 93.0 (C-2'), 112.7 (C-11'), 115.0 (C-13', C-15'), 123.2, 123.9 (C-3', C-6'), 125.0 (C-4), 130.4 (C-15), 131.5 (C-4', C-5', C-7', C-8'), 132.7, 132.9, 133.0, 133.5 (C-12, C-13, C-16), 133.1 (C-7), 133.3 (C-12', C-16'), 134.1 (C-8), 137.2 (C-5), 139.6 (C-11), 139.7 (C-6), 140.0 (C-14), 142.7 (C-3), 147.1 (C-14'); UV–vis (CHCl₃) $[\lambda_{max} nm (log \varepsilon)]$: 347 (2.99); Anal. Calcd for C32H25N: C, 90.74; H, 5.95; N, 3.31. Found: C, 90.92; H, 5.93; N, 3.27. 7: pale yellow crystals (90% yield); mp 179–180 °C (MeOH); ¹H NMR δ 2.90 (ddd, 1H, J = 13.2, 10.4, 5.4 Hz, H-2), 2.92–3.15 (m, 5H, H-1, H_s-9, H_s-10), 3.25 (m, 1H, H-1), 3.66 (ddd, 1H, J = 13.2, 10.3, 2.8 Hz, H-2), 3.84 (s, 3H, OCH₃), 6.49 (d, 1H, J = 7.8 Hz, H-8), 6.48–6.56 (m, 3H, H-12, H-13, H-16), 6.53 (dd, 1H, J = 7.8, 1.9 Hz, H-7), 6.58 (d, 1H, *J* = 1.9 Hz, H-5), 6.89 (m, 2H, H-13', H-15'), 7.02 (dd, 1H, J = 7.8, 1.8 Hz, H-15), 7.49 (m, 2H, H-12', H-16'), 7.51-7.55 (m, 4H, H-4', H-5', H-7', H-8'); 13 C NMR δ 34.6 (C-1), 34.8 (C-2), 35.4, 35.7 (C-9, C-10), 55.5 (OCH₃), 88.2 (C-9'), 91.5 (C-1'), 91.7 (C-2'), 92.9 (C-10'), 114.3 (C-13', C-15'), 115.5 (C-11'), 123.5 (C-6'), 124.9 (C-4, C-3'), 130.4 (C-15), 131.6, 131.7 (C-4', C-5', C-7', C-8'), 132.7, 132.9 (C-12, C-16), 133.2 (C-7), 133.3 (C-12', C-16'), 133.5 (C-13), 134.1 (C-8), 137.2 (C-5), 139.6 (C-11), 139.7 (C-6), 140.0 (C-14), 142.7 (C-3), 160.1 (C-14'); UV-vis (CHCl₃) $[\lambda_{\text{max}} \text{ nm } (\log \varepsilon)]$: 336 (4.65); Anal. Calcd for C₃₃H₂₆O: C, 90.38; H, 5.98. Found: C, 90.82; H,5.94.