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Novel pyrazoline optical materials were synthesized and characterized using 1H, 13C NMR and HRMS; the
thermal, optical and electrochemical properties of the compounds were also investigated. Solvent effects
on the fluorescence of the six compounds indicated that the emission wavelength was red-shifted with
increase in solvent polarity. Quantum chemical calculations were used to obtain optimized ground-state
geometry as well as spatial distributions of the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO) levels of the compounds.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction effect on the fluorescence characteristics of the six compounds was
Since the report of the first high-efficiency, multi-layered,
organic light-emittingdiode (OLED) [1],muchworkhasbeencarried
out to improve device efficiency and stability. A very successful
method for achieving such improvements is by doping a host
organic layer with a fluorescent dye of high quantum yield [2,3].
However, the question as to how such dyes are selected and evalu-
ated remains. Pyrazoline may be used as this material; pyrazoline
derivatives are five-membered, nitrogen-containing heterocyclic
compounds which have high hole-transport efficiency, excellent
blue emission and high quantum yield [4,5]. Thus, pyrazoline
derivativeshavebeenwidelyusedasfluorescentbrighteningagents,
fluorescence chemosensors, hole-transport materials in electro-
photography, OLED and as novel fluorescent materials [6e16]. Tri-
phenylamine (TPA) and its derivatives has beenwidely investigated
as hole-transporting, photovoltaic materials and electrolumines-
centmaterials for almost two decades [17e29]. Thus, in this work, it
was considered that the incorporation of a triphenylamine fragment
within a pyrazoline molecule may increase excelsior efficiency. In
this context, six pyrazoline compoundswere synthesized (Fig.1) and
their structures determinedby 1H,13CNMRandHRMS. Fluorescence
emission spectra were red-shifted in CHCl3 from 6 to 7. The solvent
7.
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studied, which indicated that the emission wavelength of the
compounds was red-shifted with increased solvent polarity. The
fluorescence quantum yields of the six compounds were obtained
and thatof7awas largest.Quantumchemical calculationswereused
to obtain optimized ground-state geometry, spatial distributions of
the highest occupied molecular orbital (HOMO), the lowest unoc-
cupied molecular orbital (LUMO) levels of the compounds.

2. Experimental section

2.1. Chemicals and instruments

All materials were commercially available and used without
further purification. Melting points were recorded on Electro-
thermal digital melting point apparatus and uncorrected. 1H and
13C NMR spectra were recorded at 295 K on a Varian INOVA
400 MHz or a Varian NMR System 300 MHz spectrometer using
CDCl3 or d6-DMSO as solvent and TMS as internal standard. UVevis
spectra were recorded on a Shimadzu UV-2501PC spectrometer;
Fluorescence spectra were obtained on an Hitachi FL-2500 spec-
trofluorimeter; Cyclic voltammetry were carried on a Chi 1200A
electrochemical analyzer with three-electrode cell (Platinum was
used as working electrode and as counter electrode, and SCE as
reference electrode) at room temperature; HRMS data were
measured using TOF-MS(EIþ) instrument; thermal properties were
performed on a SDT 2960 and DSC 2010.
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Fig. 1. Synthetic routines for compounds. Reagents and conditions: (a) NaOH (15%),
EtOH, 25 �C; (b) EtOH, 80 �C; HCl (37%).
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2.2. Synthesis

1, 4, 5 were prepared according to the published literature
[30,31] as were the chalcones 3 (aec) [32], which served as the
starting materials for further synthesis. 6 and 7 were synthesized
by reacting 4, 5 with chalcones 3 (aec) as follows. A mixture of 4
and 5 (1.0 mmol) and chalcone 3 (1.0 mmol) in ethanol (5.0 ml) and
37% HCl (0.5ml) was refluxed for 6e12 h. The resultingmixturewas
cooled and the precipitate filtered to afford the crude products,
which were recrystallized from ethanol/tetrahydrofuran (v/v¼ 1:1)
(Fig. 1).

2.2.1. 4-(Diphenylamino)benzaldehyde (1)
Compound 1: yield 86%, white. 1H NMR (CDCl3): d 9.81(s, 1H),

7.67e7.69 (d, J ¼ 8.0 Hz, 2H), 7.32e7.36 (t, J ¼ 7.8 Hz, 4H), 7.15e7.19
(m, 6H), 7.01e7.03 (d, J ¼ 8.0 Hz, 2H).

2.2.2. 3-(4-(Diphenylamino)phenyl)-1-phenylprop-
2-en-1-one (3a)

Compound 3a: M.p.: 131 �C. yield 88%, yellow. 1H NMR (CDCl3):
d 8.00 (d, J¼ 7.6 Hz, 2H), 7.77 (d, J¼ 15.6 Hz, 1H), 7,48e7.57 (m, 5H),
7.39 (d, J ¼ 15.6 Hz, 1H), 7.29e7.34 (m, 5H), 7.09e7.19 (m, 6H), 7.03
(d, J ¼ 8.8 Hz, 2H).

HRMS [Found: m/z 375.1625 (Mþ), Calcd for C27H21NO: M,
375.1623].

2.2.3. 3-(4-(Diphenylamino)phenyl)-1-(4-methoxy-phenyl)prop-
2-en-1-one (3b)

Compound 3b: M.p.: 141 �C. yield 84%, yellow. 1H NMR (CDCl3):
d 8.02 (d, J ¼ 8.8 Hz, 2H), 7.75 (d, J ¼ 15.6 Hz, 1H), 7.49 (d, J¼ 8.8 Hz,
2H), 7.40 (d, J¼ 15.6 Hz, 2H), 7.27e7.36 (m, 4H), 6.95e7.18 (m,10H),
3.88 (s, 3H).

HRMS [Found: m/z 405.1725 (Mþ), Calcd for C28H23NO2: M,
405.1729].

2.2.4. 1-(4-Chloro-phenyl)-3-(4-(diphenylamino)phenyl)prop-
2-en-1-one (3c)

Compound 3c: M.p.: 119 �C. yield 90%, yellow. 1H NMR (CDCl3):
d 7.95 (d, J¼ 8.4 Hz, 2H), 7.77 (d, J¼ 15.6 Hz, 1H), 7.44e7.50 (m, 4H),
7.29e7.36 (m, 5H), 7.12e7.22 (m, 6H), 7.03 (d, J ¼ 8.4 Hz, 2H).
HRMS [Found: m/z 409.1232 (Mþ), Calcd for C27H20NOCl: M,
409.1233].

2.2.5. 2-Hydrazinyl benzothiazole (4)
Compound 4: yield 91%, white. 1H NMR (d6-DMSO): d 7.51e8.23

(m, 4H), 6.12 (s, 1H), 3.34 (s, 2H).

2.2.6. 2-Dodecyl-6-hydrazinyl-1H-benzo isoquinoline-
1,3(2H)-dione (5)

Compound 5: yield 89%, yellow. 1H NMR (CDCl3): d 8.61 (d,
J ¼ 6.4 Hz, 1H), 8.55 (d, J ¼ 8.0 Hz, 1H), 8.04 (d, J ¼ 7.6 Hz, 1H), 7. 67
(d, J ¼ 7.2 Hz, 2H), 6. 58 (s, 1H), 4.17 (s, 2H), 3.51 (s, 2H), 1.49e1.71
(m, 20 H), 0.97 (s, 3H).

2.2.7. 1-(Benzothiazol-2-yl)-3-phenyl-5-(diphenylamino)phenyl-
2-pyrazoline (6a)

Compound 6a: M.p.: 95 �C. yield 66%, yellow. 1H NMR (CDCl3):
d 7.79 (d, J ¼ 7.6 Hz, 2H), 7.66 (d, J ¼ 8.0 Hz, 1H), 7.57 (d, J ¼ 8.0 Hz,
1H), 7.43 (d, J ¼ 5.2 Hz, 3H), 7.29 (d, J ¼ 7.2 Hz, 1H), 6.97e7.23 (m,
15H), 5.76e5.80 (m, 1H), 3.90e3.97 (m, 1H), 3.32e3.38 (m, 1H); 13C
NMR (CDCl3): d 163.7, 153.1, 147.9, 147.7, 135.2, 132.1, 131.6, 130.5,
129.8, 129.6, 129.2, 129.1, 127.3, 126.9, 126.0, 125.5, 124.8, 123.9,
123.3, 122.2, 121.2, 120.4, 63.5, 44.0.

HRMS [Found: m/z 522.1883 (Mþ), Calcd for C34H26N4S: M,
522.1878].

2.2.8. 1-(Benzothiazol-2-yl)-3-(4-methoxy-phenyl)-5-
(diphenylamino)phenyl-2-pyrazoline (6b)

Compound 6b: M.p.: 101 �C. yield 78%, yellow. 1H NMR
(CDCl3): d 7.72 (d, J ¼ 8.8 Hz, 2H), 7.64 (d, J ¼ 7.6 Hz, 1H), 7.56
(d, J ¼ 8.0 Hz, 1H), 7.28 (d, J ¼ 7.2 Hz, 1H), 7.18e7.23 (m, 6H),
6.93e7.11 (m, 11H), 5.72e5.76 (m, 1H), 3.87e3.92 (m, 1H), 3.85
(s, 3H), 3.28e3.33 (m, 1H); 13C NMR (CDCl3): d 163.6, 161.1,
152.9, 152.8, 147.8, 147.4, 135.1, 131.9, 129.4, 128.3, 127.1, 125.8,
124.7, 124.6, 124.1, 123.8, 123.1, 121.8, 121.0, 120.0, 114.3, 63.2,
55.6, 44.0.

HRMS [Found: m/z 552.1988 (Mþ), Calcd for C35H28N4OS: M,
552.1984].

2.2.9. 1-(Benzothiazol-2-yl)-3-(4-chloro-phenyl)-5-
(diphenylamino)phenyl-2-pyrazoline (6c)

Compound 6c: M.p.: 133 �C. yield 67%, yellow. 1H NMR (d6-
DMSO): d 7.78e7.81 (d, J¼ 8.4 Hz, 3H), 7.53e7.56 (d, J¼ 8.1 Hz, 2H),
7.44e7.47 (d, J ¼ 7.8 Hz, 1H), 7.21e7.28 (m, 7H), 7.08e7.13 (t,
J ¼ 7.7 Hz, 1H), 6.91e7.02 (m, 8H) 5.74e5.80 (m, 1H), 4.01e4.11 (m,
1H), 3.31e3.38 (m,1H); 13C NMR (CDCl3): d 155.1, 143.5, 141.8, 133.1,
124.2,123.8,122.9,122.5,122.2,120.0,119.7,118.5, 117.2, 116.4,112.0,
59.4, 39.7.

HRMS [Found: m/z 556.1487 (Mþ), Calcd for C34H25N4SCl: M,
556.1488].

2.2.10. 1-(2-Benzyl-benzo isoquinoline-3-dione)-3-phenyl-5-
(diphenylamino)phenyl-2-pyrazoline (7a)

Compound 7a: M.p.: 91 �C. yield 76%, red. 1H NMR (CDCl3):
d 9.64 (d, J ¼ 8.8 Hz, 1H), 8.61 (d, J ¼ 6.8 Hz, 1H), 8.35 (d,
J ¼ 8.8 Hz, 1H), 7.67e7.79 (m, 3H), 7.40e7.47 (m, 3H), 7.15e7.23
(m, 6H), 6.95e7.03 (m, 8H), 6.84 (d, J ¼ 8.8 Hz, 1H), 5.60e5.64 (m,
1H), 4.14 (t, J ¼ 7.6 Hz, 2H), 3.83e3.90 (m, 1H), 3.27e3.34 (m, 1H),
1.67e1.74 (m, 2H), 1.24 (m, 18H), 0.87 (t, J ¼ 6.8 Hz, 3H); 13C NMR
(CDCl3): d 165.0, 164.3, 152.2, 148.0, 147.6, 145.9, 134.6, 133.6, 132.6,
131.9, 131.6, 130.1, 129.6, 129.1, 196.9, 126.5, 124.9, 123.7, 123.5,
122.6, 114.1, 110.9, 65.9, 42.6, 40.6, 32.2, 29.9, 29.7, 29.6, 28.5, 27.5,
23.0, 14.4.

HRMS [Found: m/z 752.4073 (Mþ), Calcd for C51H52N4O2: M,
752.4090].



Table 1
Optical, thermal properties of the compounds 6aec and 7aec.

Compounds absa (nm) em (nm) Fb Tm/Td/Tg(�C)c

CHCl3 Solid CHCl3 THF Benzene Solid

6a 322 305 456 440 437 507 0.37 109/410/135
6b 352 340 436 427 425 453 0.93 170/475/140
6c 327 320 453 448 445 487 0.38 191/480/136
7a 613 466 535 524 505 600 0.96 189/400/133
7b 615 475 543 534 518 561 0.40 114/410/133
7c 581 462 523 519 504 622 0.41 140/450/130

a First absorption peak in dilute CHCl3 solutions (1 � 10�5 mol L�1) and solid.
b Quantum yields (F) in CHCl3 solutions were determined using quinine sulfate

(V ¼ 0.55) as standard.
c Measured by TG-DTA and DSC analysis under N2 at a heating rate of 10 �Cmin�1.

Tm is melting point, Td is decomposition temperature, Tg is glass transition
temperature.
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Fig. 3. The absorption spectra of Compound 7aec (1 � 10�5 mol L�1) in CHCl3.
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2.2.11. 1-(2-Benzyl-benzoisoquinoline-3-dione)-3-(4-methoxy-
phenyl)-5-(diphenylamino)phenyl-2-pyrazoline (7b)

Compound 7b: M.p.: 167 �C. yield 65%, red. 1H NMR (CDCl3):
d 9.67e9.70 (d, J ¼ 8.8 Hz, 1H), 8.61e8.63 (d, J ¼ 7.2 Hz, 1H),
8.34e8.36 (d, J ¼ 8.4 Hz, 1H), 7.67e7.75 (m, 3H), 7.16e7.24 (m, 6H),
6.96e7.04 (m, 10H), 6.82e6.83 (d, J ¼ 8.0 Hz, 1H), 5.60e5.61 (m,
1H), 4.13 (t, J ¼ 7.4 Hz, 2H), 3.88 (s, 3H), 3.81e3.86 (m, 1H),
3.26e3.32 (m, 1H), 1.25 (s, 20H), 0.88 (t, J ¼ 6.8 Hz, 3H); 13C NMR
(CDCl3): d 165.0, 164.3, 161.3, 152.2, 147.9, 147.6, 146.2, 134.8, 133.7,
132.7, 131.5, 131.0, 129.6, 128.1, 126.9, 124.9, 124.8, 123.8, 123.5,
123.4, 122.6, 114.5, 113.7, 110.6, 65.7, 55.7, 42.8, 40.5, 32.2, 29.9, 29.7,
29.6, 28.4, 27.5, 23.0, 14.4.

HRMS [Found: m/z 782.4197 (Mþ), Calcd for C52H54N4O3:
M,782.4196].

2.2.12. 1-(2-Benzyl-benzoisoquinoline-3-dione)-3-(4-chloro-
phenyl)-5-(diphenylamino)phenyl-2-pyrazoline (7c)

Compound 7c: M.p.: 152 �C. yield 56%, red. 1H NMR (CDCl3):
d 9.56 (d, J ¼ 8.4 Hz, 1H), 8.63 (d, J ¼ 7.2 Hz, 1H), 8.37 (d, J ¼ 8.4 Hz,
1H), 7.72 (t, J ¼ 7.2 Hz, 3H), 7.43 (d, J ¼ 8.4, Hz 2H), 7.16e7.24 (m,
6H), 6.96e7.04 (m, 8H), 6.87 (d, J ¼ 8.4 Hz, 1H), 5.63e5.67 (m, 1H),
4.14 (t, J ¼ 7.6 Hz, 2H), 3.82e3.89 (m, 1H,), 3.26e3.33 (m, 1H),
1.69e1.73 (t, J¼ 7.4 Hz, 2H), 1.25 (s, 18H), 0.87 (t, J¼ 6.8 Hz, 3H); 13C
NMR (CDCl3): d 164.9, 164.2, 152.3, 150.9, 148.0, 147.5, 145.8, 134.2,
132.5, 131.5, 130.9, 129.6, 129.5, 129.3, 127.6, 126.9, 125.4, 125.1,
124.9, 124.0, 123.6, 123.5, 121.8, 114.5, 111.2, 66.0, 42.5, 40.9, 40.5,
32.1, 29.8, 29.7, 29.6, 28.4, 27.4, 22.9, 14.4.
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Fig. 2. The absorption spectra of Compound 6aec (1 � 10�5 mol L�1) in CHCl3.
HRMS [Found: m/z 786.3691 (Mþ), Calcd for C51H51N4O2Cl:
M,786.3701].
3. Results and discussion

3.1. Absorption and fluorescence spectra

The UVevis absorption properties of compounds 6 (1�10�5mol
L�1), 7 (1�10�5 mol L�1) and photoluminescent (PL) of compounds
6 (1�10�6mol L�1), 7 (1�10�5mol L�1) in CHCl3were presented in
Table 1. Absorption spectra of each compound exhibits intense
absorption band which are attributed to the pep* transition of the
conjugated backbone [33]. The absorption peaks could be observed
in the absorption spectra of compounds 6aec in the wavelength
ranging from 230 to 500 nm. It can be seen from Fig. 2, the spectral
shape of the compounds 6aec are very similar because these
compounds possess the similar structure. Themaximumabsorption
peaks are red-shifted from 322 nm (6a), to 327 nm (6c), to 352 nm
(6b). In the case of compounds 7aec. These compounds exhibit
two prominent bands in the solution, appearing at 280e320 nm
and 581e615 nm (Fig. 3), respectively. The former is ascribed
to a localized aromatic pep* transition and the later is charge
transfer character [34]. There are slightly differences among these
compounds, although they are similar in the structure. Thus, these
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Fig. 4. Fluorescence emission spectra of compounds 6aec (1 �10�6 mol L�1) in CHCl3.
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differences might be result from the different conjugation degree
and different electron effect in these compounds [13].

Figs. 4 and 5 show the fluorescence spectra for these compounds
in diluted chloroform solutions. Compounds 6aec present a blue
emission with the peaks varying from 436 to 455 nm. By compar-
ison, the maximum emission peaks in the fluorescence spectra of
compounds 7aec are located at 524e539 nm, indicating that they
can emit green lights. This is due to the emission wavelength of
naphthalimide derivatives which is from blue to red region [35]. It
indicates that the pyrazoline derivatives emitting different colour
fluorescence can be obtained by changing substitute radical of
pyrazoline. As shown in Fig. 4, the emission peaks of 6a, 6c are at
456 and 453 nm, respectively. As for 6b, its emission peak is at
436 nm,which has been slightly blue-shifted by 20 nmwith respect
to that of 6a. Compounds 7aec have similar fluorescence spectra,
especially, the similar shape and position. The maximum emission
peaks near 524 nm are observed for these molecules. The emission
peak of 7b is red-shifted by 19 nm, whichmight be attributed to the
different conjugation degree and different electron effect in these
compounds. The difference in absorption and fluorescence spectra
of 6 and 7 is due to the fact that there is respectively a benzothia-
zole and a naphthalimide group at the 1-position of 6 and 7. The-
naphthalimide group enhances the extent of conjugation in
compounds 7 and thus shifts the absorption and fluorescence
spectra to longer wavelengths. In general, the absorption and
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Fig. 6. Fluorescence emission spectra of compounds 6aec in solid state.
fluorescence spectra for these compounds are similar to pyrazoline
derivatives reported in the literature [15,16].

The fluorescence and absorption spectra of these compounds in
the solid are similar to the corresponding spectra measured in
solution. Comparing to thefluorescence spectra of these compounds
in solution, a red shift of 17e99 nm in the peak wavelength is
observed in the solid (Figs. 6 and 7). Whereas to our surprised,
comparing the absorption spectra of these compounds in solution,
a blue shift of 7e140nm in the peakwavelengthwas observed in the
solid (Figs. 8 and9). These relatively shifts in the spectra suggest that
there is no big change in the molecular configuration of these
compoundswhen they are dissolved in solution or in solid film [10].

The fluorescence quantum yields (V) were measured in CHCl3
using quinine sulfate (V ¼ 0.55) as standard [36]. The V value of
0.96 is observed for 7a, which is higher than that of other
compounds. This might be due to the conjugation degree and non-
planar configuration degree of 7a. The PL quantum yields of the
other compounds are in the range of 0.37e0.93. This difference of
quantum yields might be due to the change of the molecular size
and the change of the electronic pushepull substitution of the
conjugated part in the molecules [10].

Moreover, the solvent effect on the fluorescence characteristics
of these compounds was studied, which indicated that the emis-
sion wavelength of the compound was red-shifted with the
increase of solvent polarity (Figs. 10 and 11) [37,38].
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3.2. Thermal properties

The glass transition temperatures (Tg) were obtained from
differential scanning calorimeter. The compounds were heated
at 10 �C/min under a nitrogen atmosphere. A second heating scan
at the same rate was performed to detect the decomposition
temperatures (Td) by thermogravimetric analysis (TGA), Melting
points (Tm) were recorded on Electrothermal digital melting point
apparatus and the detailed data are listed in Table 1. The Tg value of
these compounds increases progressively on incorporating chro-
mophores such as benzothiazole and naphthalimide. The six
materials of 6a, 6b, 6c, 7a, 7b and 7c show distinct Tg at 135, 140,
136, 133, 133 and 130 �C, respectively. The glass transition
temperatures of 7 are reduced compared to 6, which might be due
to the close packing and intermolecular interaction. Furthermore,
the six compounds show high thermal stabilities with decompo-
sition temperatures (Td) from 400 to 480 �C, which indicate that the
decomposition temperatures rise with the increase of conjugation
degree and electron effect. Due to the thermal stability of the six
compounds, thin films of the compounds could be prepared by
vacuum deposition. Therefore, the introduction of TPA substituents
at the C-5 position is beneficial for these compounds [39].
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3.3. Electrochemical properties

The electrochemical properties of compounds 6, 7 were
analyzed by cyclic voltammetry in CHCl3 in the presence of tetra-
butylammonium hexafluorophosphate (0.10mol L�1) as supporting
electrolyte (Fig. 12) and the results are listed in Table 2. All
CV measurements were recorded at room temperature with
a conventional three-electrode configuration consisting of a plat-
inum wire working electrode, a platinum counter electrode, and
a SCE (saturated calomel electrode) reference electrode under
argon. Electrochemical band gaps were calculated from onset
potentials of the anodic and cathodic waves [40]. The cyclic vol-
tammetry (CV) of compounds 6, 7 exhibit an irreversible oxidation
process which shift positively from �0.73 to �0.45 V. As shown in
Table 2, the HOMO ranges are from �5.13 to �4.85 eV, while the
LUMO ranges are from �2.07 to �1.57 eV, which are in agreement
with the calculated values (�5.17 to �4.95 eV for the HOMO, and
�2.26 to�1.63 eV for the LUMO of compounds). The HOMO energy
level is lower than that of the most widely used hole-transport
material 4,40-bis(1-naphthylphenylamino)biphenyl (NBP) (5.20 eV)
and this might be beneficial for the hole-transport capacity [41].
Their LUMO levels represented a small barrier for electron injection
from a commonly used cathode such as barium, which has a work
function of 2.2 eV [42]. Therefore, these compounds might be used
for hole-transporting and electron-transporting materials for
OLEDs [10].
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Fig. 12. Cyclic voltammetry of the compound 6b in 0.1 mol L�1 Bu4NPF6-CHCl3.



Table 2
Electrochemical properties of the compounds 6aec and 7aec.

Compound Band
gapa

HOMO/LUMOa

(eV)
Eg (eV)b Eoxc (V) EHOMO/ELUMO

d

(eV)

6a 2.95 �5.12/�2.17 3.28 0.45 �4.85/�1.57
6b 2.92 �4.95/�2.03 3.17 0.73 �5.13/-1.96
6c 3.43 �5.06/�1.63 3.25 0.67 �5.07/�1.82
7a 2.93 �5.11/�2.18 3.12 0.55 �4.95/�1.83
7b 2.97 �5.07/�2.10 2.95 0.62 �5.02/�2.07
7c 2.91 �5.17/�2.26 3.12 0.57 �4.97/�1.85

a DFT/B3LYP calculated values.
b Optical energy gaps calculated from the edge of the electronic absorption band.
c Oxidation potential in CHCl3 (10�3 M) containing 0.1 M (n-C4H9)4NPF6 with

a scan rate of 100 mV s�1.
d EHOMO was calculated by Eox þ 4.4 V (vs NHE), and ELUMO ¼ EHOMO � Eg.
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3.4. Theoretical calculation

The ground-state geometry of compounds 6a and 7a as exam-
ples were optimized by hybrid densityfunctional theory (B3LYP)
with 6e31G* basis set in the Gaussian 03 program package [43]
(Fig. 13). The dihedral angle of 6a formed between the pyrazoline
ring and a benzene ring of TPA is 85.3� and the whole molecule
takes a non-planar configuration, which helps to impede the pep
stacking interaction in solid state to some extent. In the case of
compound 7a, the dihedral angle formed between the pyrazoline
ring and a benzene ring of TPA is 89.2� and the dihedral angle
formed between the pyrazoline ring and naphthalimide group is
43.5�. Fig. 14 illustrates the calculated spatial distributions of the
HOMO (the highest occupied molecular orbital), LUMO (the lowest
unoccupied molecular orbital) levels of compounds 6a and 7a. As
can be seen clearly, HOMO is a p orbital concentrated on the central
triphenylamine moiety; LUMO is of p* character distributed on the
pyrazoline ring and benzene ring for 6a, the pyrazoline ring and
naphthalimide ring for 7a.
Fig. 13. Optimized ground-state geometry of compounds 6a and 7awith B3LYP/6-31G*
in gas phase.

Fig. 14. Calculated spatial distributions of the HOMO, LUMO levels of compounds 6a
and 7a.
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4. Conclusions

In summary, we have designed and synthesized a series of novel
pyrazoline chromophores containing triphenylamine moieties. The
synthetic strategy is straightforward, benefits from high yield and
facile purification without tedious silica gel chromatography. The
thermal, optical and electrochemical properties were also investi-
gated. The fluorescence quantum yields of the six compounds
were obtained. Further research is presently under study in our
laboratory.
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