

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 61 (2005) 9896-9901

A palladium catalyzed efficient synthesis of γ -methylene- α , β -unsaturated γ -lactones via cyclization of 3,4-alkadienoic acids

Shengming Ma* and Fei Yu

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, People's Republic of China

Received 1 March 2005; revised 19 April 2005; accepted 10 June 2005

Available online 14 July 2005

Abstract—An efficient method was developed for the synthesis of γ -methylene- α , β -unsaturated γ -lactones from the Pd-catalyzed cyclization of 3,4-alkadienoic acids. Control experiment shows that the reaction should be carried out under a N₂ atmosphere to ensure the high purity of the products.

© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the chemistry of allenes has been attracting the attention of more and more chemists.^{1,2} During the course of our studies on the chemistry of allenes,^{3,4} we have developed some new methodologies for the synthesis of butenolides from α -allenoic acids (Scheme 1).⁵

$$\begin{array}{c} R^{2} \\ R^{1} \\ HO \end{array} + R^{4}X \xrightarrow{\text{cat. Pd}(0)/\text{Ag}^{+}} \\ \text{base, solvent} \end{array} \xrightarrow{R^{2}} R^{2} \\ R^{1} \\ O \end{array} \xrightarrow{R^{2}} O$$

2. Results and discussion

When we turned our attention from the α -allenoic acids to the β -allenoic acids **1a**, we found that under the catalysis of Pd(0)/Ag⁺ the reaction of 2-methyl-3-(*n*-butyl)-3,4-pentadienoic acid with iodobenzene in MeCN afforded not only the coupling-cyclization product **2a** but also 5-methylene-2(5*H*)-furanone **3a** (Scheme 2). Recently, the γ -alkylidene- α , β -unsaturated γ -lactones⁶ has also attracted the attention of many organic chemists because of their biological activities^{7,8} and versatile use in organic synthesis.⁹ When we found product **3a** was obtained in 29% yield in DMF under the catalysis of Pd(PPh₃)₄ (entry 1, Table 1), we went on to search a set of reaction conditions for the sole formation of **3a**. When 4 equiv CuCl₂ were used instead of PhI, 5-methylene-2(5H)-furanone **3a** was afforded under the catalysis of PdCl₂(PPh₃)₂ (entry 2, Table 1). However, the product was contaminated by other inseparable by-products. Furthermore, it is lucky for us to observe that when the reaction was conducted under a N_2 atmosphere, **3a** was isolated as the single product in 88% yield with a very high purity (entry 3, Table 1). When CuBr₂ was used instead of CuCl₂, the reaction was complicated (entry 4, Table 1). In the presence of H_2O or O_2 , the purity of the product was also not high (entries 2, 5, and 6, Table 1). When a less amount of CuCl₂ was applied, the yield of **3a** was obviously lower (entries 7 and 8, Table 1). Thus, after screening several commonly used catalyst, PdCl₂(PPh₃)₂ appeared to be the best (compare entries 9-11 with entry 3, Table 1). The reaction could proceed in the absence of PdCl₂(PPh₃)₂ albeit in much lower yield (entry 12, Table 1). Obviously this cyclization reaction can also be mediated by CuCl₂ (entry 13, Table 1). In the absence of the base the yield was also low (entry 14, Table 1). When only 3 equiv of K_2CO_3 were added, the product isolated was not pure (entry 15, Table 1). When 5 equiv of CuCl₂ were applied, no obvious improvement was observed (entry 16, Table 1). From these results we concluded the best reaction conditions:

Keywords: 3,4-Alkadienoic acids; Palladium; CuCl₂; Cyclization.

^{*} Corresponding author. Tel.: +86 21 6416 3300; fax: +86 21 6416 7510; e-mail: masm@mail.sioc.ac.cn

^{0040–4020/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2005.06.063

Table 1. Pd-catalyzed cyclization reaction of 2-methyl-3-(n-butyl)penta-3,4-dienoic acid 1a

Entry	Catalyst (5 mol%)	Additive (equiv)	Time (h)	Yield of 3a (%)
1	$Pd(PPh_3)_4$	PhI (1.5)	24	29
2 ^a	$PdCl_2(PPh_3)_2$	$CuCl_2$ (4)	12	<87 ^b
3	$PdCl_2(PPh_3)_2$	$CuCl_2(4)$	12	88
4	$PdCl_2(PPh_3)_2$	$CuBr_2(5)$	24	complicated
5 ^c	$PdCl_2(PPh_3)_2$	$CuCl_2$ (4)	12	$< 50^{\circ}$
6 ^d	$PdCl_2(PPh_3)_2$	$CuCl_2$ (4)	12	<70 ^b
7	$PdCl_2(PPh_3)_2$	$CuCl_2$ (2.5)	24	75
8	$PdCl_2(PPh_3)_2$	CuCl ₂ (0.8)	24	22
9	PdCl ₂	$CuCl_2$ (4)	24	54
10	$Pd(OAc)_2$	$CuCl_2$ (4)	24	40
11	PdCl ₂ (CH ₃ CN) ₂	$CuCl_2$ (4)	24	34
12		$CuCl_2$ (4)	24	60
13	_	$CuCl_2(1)$	12	18
14 ^e	$PdCl_2(PPh_3)_2$	$CuCl_2$ (4)	12	70
15 ^f	$PdCl_2(PPh_3)_2$	$CuCl_2$ (4)	12	<87 ^b
16 ^g	$PdCl_2(PPh_3)_2$	$CuCl_2$ (4)	12	89

^a The reaction was exposed to air.

^b The product is not pure.

^c The reaction was conducted under 1 atm of pure O_2 .

^d Four equivalents H₂O was added.

^e No $K_2 \overline{CO}_3$ was used.

^f Three equivalents K₂CO₃ were used.

^g Five equivalents $K_2 \tilde{C} O_3$ were used.

5 mol% PdCl₂(PPh₃)₂, 4 equiv of CuCl₂, 4 equiv of K_2CO_3 in DMF at 70 °C for 12 h under N₂.

β-Allenoic acids can be conveniently prepared from the hydrolysis of the corresponding β-allenoic acid esters.¹⁰ Subsequently, we studied the scope of this cyclization reaction of β-allenoic acids (Table 2). From the data listed in Table 2, it is obvious that the scope of the reactant is broad: R^1 can be H, alkyl, allyl, Bn or *t*-Bu and R^2 can be H or alkyl. With simple unsubstituted pentadienoic acid, the

Table 2. $PdCl_2(PPh_3)_2$ -catalyzed cyclization reaction of β -allenoic acids 1

—•—< ноос́ 1	R^1 $ angle - R^2$	5 mol% PdCl ₂ (PP 4 equiv. CuCl ₂ 4 equiv. K ₂ CO ₃ DMF, 70 °C, 12 h	'h ₃)₂ →	
Entry	\mathbb{R}^1	\mathbb{R}^2		Yield of 3 (%)
1	<i>n</i> -Bu	Me	(1a)	88 (3a)
2	<i>n</i> -Bu	Н	(1b)	78 (3b)
3	<i>n</i> -Bu	Et	(1c)	81 (3c)
4	<i>n</i> -Bu	<i>n</i> -Pr	(1d)	84 (3d)
5	Me	Me	(1e)	64 (3e)
6	$n - C_7 H_{15}$	Me	(1f)	84 (3f)
7	t-Bu	Me	(1g)	71 (3g)
8	Allyl	Me	(1h)	66 (3h)
9	Bn	Me	(1i)	89 (3i)
10	Н	<i>n</i> -Pr	(1j)	51 (3j)
11	Н	Н	(1k)	31 $a(3k)$

^a The yield was determined by NMR using *p*-methoxyiodobenzene as the internal standard. yield of $3\mathbf{k}$ (protoanemonin)⁷ is 31% by NMR (entry 11, Table 2).

A palladium catalyzed mechanism was proposed for this reaction: *endo*-mode cyclic anti-oxypalladation of the non-terminal carbon–carbon double bonds in the 3,4-allenoic acids would form **4**, which would afford the products **3** via *syn*- β -H elimination, which may be facilitated by the presence of the base and the electron-withdrawing carbonyl group in **4**. The in situ generated palladium hydride species would form Pd(0) species upon its action with K₂CO₃. The catalytically active Pd(II) species would be regenerated via the oxidation with CuCl₂ (Scheme 3).

In conclusion, we have described a convenient method for the preparation of the valuable γ -methylene-2(5*H*)-furanones from 3,4-allenoic acids in high yield. The reaction demonstrated high efficiency and regioselectivity. Further studies in this area are being conducted in our laboratory.

3. Experimental

3.1. General procedure for the synthesis of β -allenoic acids 1

Conditions A. A solution of the corresponding β -allenoic acid ethyl ester¹⁰ (6 mmol), and LiOH (288 mg, 12 mmol) was stirred in the mixed solvent of 12 mL of H₂O and 24 mL of MeOH at 30 °C for 3 days. After acidification with 1 N HCl, extraction with ether, drying over anhydrous Na₂SO₄, and evaporation, the mixture was submitted to flash

Scheme 3.

chromatography on silica gel $(CH_2Cl_2/MeOH = 10/1)$ to produce compound **1**.

Conditions B. A solution of the corresponding β -allenoic acid ethyl ester¹⁰ (6.6 mmol) was stirred in the mixed solvent of 27 mL of 20% hydrochloric acid, 20 mL of 1,4-dioxane, and 7 mL of THF at 30 °C for 3 days. After extraction with ether, drying over anhydrous Na₂SO₄, and evaporation, the mixture was submitted to flash chromatography on silica gel (CH₂Cl₂/MeOH=10/1) to produce compound **1**.

3.1.1. 2-Methyl-3-(*n*-butyl)penta-3,4-dienoic acid (1a). The reaction of the corresponding allenoic acid ester (1044 mg, 5.3 mmol) with LiOH (250 mg, 10.4 mmol) afforded 817 mg (91%) of **1a** under conditions A: liquid; ¹H NMR (300 MHz, CDCl₃) δ 11.64 (br s, 1H), 4.85–4.81 (m, 2H), 3.05–2.95 (m, 1H), 2.08–1.93 (m, 2H), 1.47–1.30 (m, 4H), 1.27 (d, *J*=7.2 Hz, 3H), 0.89 (t, *J*=7.2 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 205.9, 181.3, 103.3, 78.3, 42.1, 30.2, 29.6, 22.3, 15.8, 13.9; IR (neat) 1958, 1711, 1459, 1222 cm⁻¹; MS (*m*/*z*) 168 (M⁺, 4.83), 111 (100); HRMS calcd for C₁₀H₁₆O₂(M⁺) 168.11503; Found 168.11785.

3.1.2. 3-(*n*-**Butyl**)**penta-3,4-dienoic acid (1b).** The reaction of the corresponding allenoic acid ester (1.132 g, 6.2 mmol) with LiOH (314 mg, 13 mmol) afforded 275 mg (29%) of **1b** under conditions A: liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.83 (br s, 1H), 4.78–4.70 (m, 2H), 3.03 (t, *J*=2.4 Hz, 2H), 2.08–1.99 (m, 2H), 1.48–1.25 (m, 4H), 0.89 (t, *J*=

7.2 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 207.1, 178.0, 96.7, 76.1, 38.5, 31.2, 29.4, 22.2, 13.8; IR (neat) 1961, 1740 cm⁻¹; MS (*m*/*z*) 154 (M⁺, 11.97), 41 (100); HRMS calcd for C₉H₁₄O₂(M⁺) 154.09938; Found 154.10058.

3.1.3. 2-Ethyl-3-(*n*-butyl)penta-3,4-dienoic acid (1c). The reaction of the corresponding allenoic acid ester (3654 mg, 17.4 mmol) with LiOH (945 mg, 39.4 mmol) afforded 3060 mg (97%) of 1c under conditions A: liquid; ¹H NMR (300 MHz, CDCl₃) δ 11.52 (br s, 1H), 4.84–4.79 (m, 2H), 2.77 (t, *J*=7.5 Hz, 1H), 2.08–1.92 (m, 2H), 1.85–1.71 (m, 1H), 1.69–1.56 (m, 1H), 1.48–1.25 (m, 4H), 0.94 (t, *J*=7.5 Hz, 3H), 0.89 (t, *J*=7.2 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 206.2, 180.7, 101.8, 77.8, 49.9, 30.3, 29.5, 23.5, 22.3, 13.9, 12.0; IR (neat) 1957, 1707, 1460, 1219 cm⁻¹; MS (*m*/*z*) 182 (M⁺, 1.59), 153 (100); HRMS calcd for C₁₁H₁₈O₂Na(MNa⁺) 205.1223; Found 205.1219.

3.1.4. 2-*n*-(**Propyl**)-**3**-*n*-(**butyl**)**penta-3**,**4**-**dienoic** acid (**1d**). The reaction of the corresponding allenoic acid ester (4613 mg, 20.6 mmol) with LiOH (1198 mg, 50 mmol) afforded 3300 mg (82%) of **1d** under conditions A: liquid; ¹H NMR (300 MHz, CDCl₃) δ 11.50 (br s, 1H), 4.84–4.76 (m, 2H), 2.87 (t, J=7.5 Hz, 1H), 2.06–1.92 (m, 2H), 1.63–1.52 (m, 1H), 1.45–1.25 (m, 4H), 1.49–1.25 (m, 6H), 0.91 (t, J=6.9 Hz, 3H), 0.89 (t, J=7.2 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 206.2, 180.9, 102.0, 77.8, 48.0, 32.4, 30.2, 29.5, 22.3, 20.6, 13.9, 13.8; IR (neat) 1957, 1708, 1466, 1210 cm⁻¹; MS (*m*/*z*) 196 (M⁺, 1.19), 153 (100); HRMS calcd for C₁₂H₂₀O₂Na(MNa⁺) 219.1355; Found 219.1377.

3.1.5. 2,3-Dimethylpenta-3,4-dienoic acid (1e). The reaction of the corresponding allenoic acid ester (1.541 g, 10 mmol) with LiOH (480 mg, 20 mmol) afforded 639 mg (51%) of **1e** under conditions A: liquid; ¹H NMR (300 MHz, CDCl₃) δ 11.77 (br s, 1H), 4.79–4.72 (m, 2H), 3.08–2.96 (m, 1H), 1.76 (t, *J*=3.3 Hz, 3H), 1.28 (d, *J*=6.9 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 206.5, 181.1, 98.0, 76.3, 42.9, 17.1, 15.5; IR (neat) 1962, 1712, 1456, 1223 cm⁻¹; MS (*m/z*) 126 (M⁺, 7.53), 111 (100); HRMS calcd for C₇H₁₀O₂(M⁺) 126.06635; Found 126.06681.

3.1.6. 2-Methyl-3-(*n*-heptyl)penta-3,4-dienoic acid (1f). The reaction of the corresponding allenoic acid ester (1.357 g, 5.7 mmol) with LiOH (297 mg, 12.4 mmol) afforded 639 mg (53%) of **1f** under conditions A: liquid; ¹H NMR (300 MHz, CDCl₃) δ 11.43 (br s, 1H), 4.86–4.81 (m, 2H), 3.08–2.95 (m, 1H), 2.14–1.92 (m, 2H), 1.48–1.26 (m, 13H), 0.88 (d, J=7.2 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 205.9, 181.3, 103.4, 78.2, 42.1, 31.8, 30.5, 29.2, 29.1, 27.4, 22.6, 15.8, 14.1; IR (neat) 1958, 1709, 1459, 1221 cm⁻¹; MS (*m*/*z*) 210 (M⁺, 3.75), 111 (100); HRMS calcd for C₁₃H₂₂O₂(M⁺) 210.16198; Found 210.16407.

3.1.7. 2-Methyl-3-*(tert-***butyl)penta-3,4-dienoic acid (1g).** The reaction of the corresponding allenoic acid ester (538 mg, 2.7 mmol) with LiOH (145 mg, 5.5 mmol) afforded 143 mg (31%) of **1g** under conditions A: solid; mp 44 °C (ether); ¹H NMR (300 MHz, CDCl₃) δ 4.86 (s, 2H), 3.06 (q, *J*=6.9 Hz, 1H), 1.29 (d, *J*=7.2 Hz, 3H), 1.08 (s, 9H); ¹³C NMR (75.4 MHz, CDCl₃) δ 205.3, 181.6, 112.8, 79.1, 37.6, 33.6, 29.0, 18.4; IR (neat) 1950, 1707, 1233 cm⁻¹; MS (*m/z*) 169 (M⁺ + 1, 93.02), 168 (M⁺, 20.46), 153 (100). Anal. Calcd for C₁₀H₁₆O₂: C, 71.39; H, 9.59. Found C, 71.46; H, 9.31.

3.1.8. 2-Methyl-3-allylpenta-3,4-dienoic acid (1h). The reaction of the corresponding allenoic acid ester (2745 mg, 15.2 mmol) with LiOH (719 mg, 30 mmol) afforded 553 mg (24%) of **1h** under conditions A: liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.57 (br s, 1H), 5.88–5.71 (m, 1H), 5.12–5.02 (m, 2H), 4.88–4.83 (m, 2H), 3.09–2.98 (m, 1H), 2.90–2.73 (m, 2H), 1.28 (d, *J*=6.6 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 206.3, 180.9, 135.1, 116.5, 101.6, 78.3, 41.2, 35.7, 15.7; IR (neat) 1958, 1712, 1641 cm⁻¹; MS (*m/z*) 153 (M⁺ + 1, 38.90), 152 (M⁺, 14.13), 107 (100); HRMS calcd for C₉H₁₂O₂(M⁺) 152.08373; Found 152.08326.

3.1.9. 2-Methyl-3-benzylpenta-3,4-dienoic acid (1i). The reaction of the corresponding allenoic acid ester (1.798 g, 7.8 mmol) with LiOH (402 mg, 16.8 mmol) afforded 1.179 g (75%) of **1i** under conditions A: liquid; ¹H NMR (300 MHz, CDCl₃) δ 11.78 (br s, 1H), 7.38–7.15 (m, 5H), 4.87 (br s, 2H), 3.52 (d, J=15.0 Hz, 1H), 3.41 (d, J=15.0 Hz, 1H), 3.03–2.92 (m, 1H), 1.28 (d, J=7.2 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 206.9, 181.1, 138.7, 129.1, 128.2, 126.4, 102.9, 78.1, 40.6, 38.2, 15.9; IR (neat) 1958, 1705, 1455, 1226 cm⁻¹; MS (m/z) 202 (M⁺, 2.59), 129 (100); HRMS calcd for C₁₃H₁₄O₂(M⁺) 202.09938; Found 202.09801.

3.1.10. 2-(*n*-Propyl)penta-3,4-dienoic acid (1j). The reaction of the corresponding allenoic acid ester

(1693 mg, 10 mmol) afforded 453 mg (33%) of **1j** under conditions B: liquid; ¹H NMR (300 MHz, CDCl₃) δ 11.60 (br s, 1H), 5.20 (q, *J*=3.6 Hz, 1H), 4.80 (d, *J*=6.9 Hz, 2H), 3.03 (q, *J*=8.1 Hz, 1H), 1.83–1.72 (m, 1H), 1.64–1.55 (m, 1H), 1.43–1.34 (m, 2H), 0.92 (t, *J*=7.5 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 208.5, 180.8, 88.7, 76.5, 44.9, 33.9, 20.2, 13.7; IR (neat) 1958, 1709, 1415, 1286, 1208 cm⁻¹; MS (*m*/*z*) 141 (M⁺ + 1, 4.15), 97 (100); HRMS calcd for C₈H₁₁O(M⁺ – OH) 123.08099; Found 123.08177.

3.1.11. Penta-3,4-dienoic acid (**1k**).¹¹ The reaction of the corresponding allenoic acid ester (2038 mg, 16.2 mmol) afforded 1360 mg (86%) of **1k** under conditions B: liquid; ¹H NMR (300 MHz, CDCl₃) δ 11.91 (br s, 1H), 5.23 (pentet, J=6.9 Hz, 1H), 4.79–4.71 (m, 2H), 3.12–3.04 (m, 2H); ¹³C NMR (75.4 MHz, CDCl₃) δ 209.3, 178.1, 82.7, 75.9, 33.9; IR (neat) 1960, 1713, 1440 cm⁻¹; MS (*m*/*z*) 98 (M⁺, 15.03), 97 (M⁺ – 1, 40.04), 70 (100).

The reaction of **1a** (86 mg, 5.0 mmol), PhI (85 μ l, 7.5 mmol), K₂CO₃ (273 mg, 2.0 mmol), AgNO₃ (8 mg, 0.05 mmol), and Pd(PPh₃)₄ (30 mg, 0.025 mmol) in 3 mL of CH₃CN at 70 °C for 33 h produced 30 mg (24%) of **2a** and 9 mg (11%) of **3a** via separation with chromatography on silica gel (petroleum ether/ether=5/1).

3.1.12. 3-Methyl-4-(*n*-butyl)-5-benzyl-2(5*H*)-furanone (**2a**). Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.32–7.17 (m, 5H), 5.09–4.97 (m, 1H), 3.15 (dd, J=3.6, 14.1 Hz, 1H), 2.75 (dd, J=7.5, 14.1 Hz, 1H), 2.53–2.40 (m, 1H), 2.30–2.22 (m, 1H), 1.74 (s, 3H), 1.52–1.22 (m, 4H), 0.92 (t, J=7.2 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 174.3, 162.5, 135.6, 129.2, 128.3, 126.8, 123.9, 82.1, 38.6, 29.7, 26.4, 22.5, 13.6, 8.5; IR (neat) 1754, 1675, 1455 cm⁻¹; MS (*m*/*z*) 244 (M⁺, 0.62), 84 (100); HRMS calcd for C₁₆H₂₀O₂(M⁺) 244.14633; Found 244.14523.

3.2. General procedure for $PdCl_2(PPh_3)_2$ -catalyzed cyclization reaction of β -alleneoic acids 1

Under N₂ atmosphere a solution of **1** (0.5 mmol), PdCl₂(PPh₃)₂ (18 mg, 5 mol%), anhydrous CuCl₂ (270 mg, 2 mmol), and K₂CO₃ (276 mg, 2 mmol) was stirred in 3 mL of anhydrous DMF at 70 °C for 12 h. The reaction mixture was diluted with ether (50 mL), washed with brine, and dried over anhydrous Na₂SO₄. After evaporation, the residue was submitted to column chromatography on silica gel (petroleum ether/ether=10/1) to produce **3**.

3.2.1. 3-Methyl-4-(*n*-butyl)-5-methylene-2(5*H*)-furanone (**3a**). The reaction of **1a** (84 mg, 0.5 mmol), CuCl₂ (266 mg, 2.0 mmol), K₂CO₃ (277 mg, 2.0 mmol), and Pd(PPh₃)₄ (5 mol%) in 3 mL of DMF at 70 °C for 12 h produced 73 mg (88%) of **3a**: liquid; ¹H NMR (300 MHz, CDCl₃) δ 5.06 (d, J=2.7 Hz, 1H), 4.81 (d, J=2.7 Hz, 1H), 2.44 (t, J=7.5 Hz, 2H), 1.91 (s, 3H), 1.56–1.46 (m, 2H), 1.41–1.30 (m, 2H), 0.93 (t, J=7.2 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 170.7, 155.2, 150.9, 126.0, 92.5, 31.1, 24.5, 22.6, 13.8, 8.8; IR (neat) 1773, 1648, 1459, 1287 cm⁻¹; MS (*m*/*z*) 167 (M⁺ + 1, 10.40), 166 (M⁺, 10.40), 124 (100); HRMS calcd for C₉H₁₁O₂(M⁺ – CH₃) 151.0759; Found 151.0785.

3.2.2. 5-Methylene-4-(*n***-butyl**)**-2**(*5H*)**-furanone** (**3b**). The reaction of **1b** (74 mg, 0.5 mmol), CuCl₂ (267 mg, 2.0 mmol), K₂CO₃ (276 mg, 2.0 mmol), and Pd(PPh₃)₄ (5 mol%) in 3 mL of DMF at 70 °C for 12 h produced 57 mg (78%) of **3b**: liquid; ¹H NMR (300 MHz, CDCl₃) δ 5.95–5.92 (m, 1H), 5.13–5.10 (m, 1H), 4.91–4.89 (m, 1H), 2.45 (dt, *J*=1.2, 7.5 Hz, 2H), 1.66–1.52 (m, 2H), 1.46–1.31 (m, 2H), 0.92 (t, *J*=7.5 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 169.2, 159.3, 155.9, 116.6, 94.1, 29.9, 25.7, 22.2, 13.6; IR (neat) 1763, 1651, 1467, 1261 cm⁻¹; MS (*m*/*z*) 153 (M⁺ + 1, 21.12), 152 (M⁺, 12.22), 110 (100); HRMS calcd for C₉H₁₂O₂(M⁺) 152.08373; Found 152.08498.

3.2.3. 3-Ethyl-4-(*n*-**butyl**)-**5-methylene-2**(*5H*)-**furanone** (**3c**). The reaction of **1c** (92 mg, 0.5 mmol), CuCl₂ (282 mg, 2.0 mmol), K₂CO₃ (286 mg, 2.0 mmol), and Pd(PPh₃)₄ (5 mol%) in 3 mL of DMF at 70 °C for 12 h produced 74 mg (81%) of **3c**: liquid; ¹H NMR (300 MHz, CDCl₃) δ 5.04 (d, *J*=2.7 Hz, 1H), 4.79 (d, *J*=2.4 Hz, 1H), 2.42 (t, *J*=7.5 Hz, 2H), 2.32 (q, *J*=7.5 Hz, 2H), 1.57–1.46 (m, 2H), 1.44–1.30 (m, 2H), 1.10 (t, *J*=7.5 Hz, 3H), 0.91 (t, *J*=6.9 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 170.1, 155.1, 150.4, 131.3, 92.5, 31.7, 24.3, 22.6, 17.2, 13.7, 12.7; IR (neat) 1772, 1648, 1463, 1296, 1256 cm⁻¹; MS (*m/z*) 181 (M⁺ + 1, 100); HRMS calcd for C₁₁H₁₆O₂Na(MNa)⁺ 203.1042; Found 203.1041.

3.2.4. 3-(*n*-Propyl)-4-(*n*-butyl)-5-methylene-2(5*H*)-furanone (**3d**). The reaction of **1d** (98 mg, 0.5 mmol), CuCl₂ (272 mg, 2.0 mmol), K₂CO₃ (278 mg, 2.0 mmol), and Pd(PPh₃)₄ (5 mol%) in 3 mL of DMF at 70 °C for 12 h produced 81 mg (84%) of **3d**: liquid; ¹H NMR (300 MHz, CDCl₃) δ 5.03 (d, J=2.4 Hz, 1H), 4.79 (d, J=2.7 Hz, 1H), 2.41 (t, J=7.5 Hz, 2H), 2.26 (t, J=7.5 Hz, 2H), 1.58–1.46 (m, 4H), 1.40–1.30 (m, 2H), 0.91 (t, J=7.5 Hz, 6H); ¹³C NMR (75.4 MHz, CDCl₃) δ 170.2, 155.0, 150.9, 129.9, 92.5, 31.6, 25.7, 24.4, 22.7, 21.4, 13.9, 13.7; IR (neat) 1718, 1648, 1465, 1284 cm⁻¹; MS (*m*/*z*) 195 (M⁺ + 1, 32.35), 194 (M⁺, 15.12), 123 (100); HRMS calcd for C₁₂H₁₈O₂(M⁺) 194.13068; Found 194.13200.

3.2.5. 3,4-Dimethyl-5-methylene-2(5*H***)-furanone (3e). The reaction of 1e** (63 mg, 0.5 mmol), CuCl₂ (270 mg, 2.0 mmol), K₂CO₃ (281 mg, 2.0 mmol), and Pd(PPh₃)₄ (5 mol%) in 3 mL of DMF at 70 °C for 12 h produced 40 mg (64%) of **3e**: solid; mp 80–81 °C (ether); ¹H NMR (300 MHz, CDCl₃) δ 5.03 (d, J=2.7 Hz, 1H), 4.79 (d, J=2.7 Hz, 1H), 2.04 (s, 3H), 1.89 (s, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 170.6, 155.8, 146.6, 126.2, 92.2, 9.9, 8.7; IR (neat) 1763, 1651, 1439, 1285, 1260 cm⁻¹; MS (*m/z*) 124 (M⁺, 100); HRMS calcd for C₇H₈O₂(M⁺) 124.05243; Found 124.05262.

3.2.6. 3-Methyl-4-(*n*-heptyl)-**5-methylene-2(5***H*)-furanone (**3f**). The reaction of **1f** (105 mg, 0.5 mmol), CuCl₂ (277 mg, 2.0 mmol), K₂CO₃ (282 mg, 2.0 mmol), and Pd(PPh₃)₄ (5 mol%) in 3 mL of DMF at 70 °C for 12 h produced 90 mg (84%) of **3f**: liquid; ¹H NMR (300 MHz, CDCl₃) δ 5.03 (d, *J*=2.1 Hz, 1H), 4.78 (d, *J*=2.7 Hz, 1H), 2.40 (t, *J*=7.5 Hz, 2H), 1.88 (s, 3H), 1.53–1.46 (m, 2H), 1.30–1.21 (m, 8H), 0.84 (t, *J*=6.9 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 170.7, 155.2, 151.0, 126.0, 92.5, 31.6, 29.4, 29.0, 28.9, 24.8, 22.5, 14.0, 8.8; IR (neat) 1774, 1648,

1466, 1287 cm⁻¹; MS (*m*/*z*) 208 (M⁺, 6.83), 124 (100); HRMS calcd for $C_{13}H_{20}O_2(M^+)$ 208.14633; Found 208.14484.

3.2.7. 3-Methyl-4-(*tert*-butyl)-**5-methylene-2**(*5H*)-furanone (**3g**). The reaction of **1g** (77 mg, 0.46 mmol), CuCl₂ (250 mg, 1.85 mmol), K₂CO₃ (262 mg, 1.90 mmol), and Pd(PPh₃)₄ (5 mol%) in 3 mL of DMF at 70 °C for 12 h produced 53 mg (71%) of **3g**: liquid; ¹H NMR (300 MHz, CDCl₃) δ 5.21 (d, *J*=2.1 Hz, 1H), 5.09 (d, *J*=2.1 Hz, 1H), 2.08 (s, 3H), 1.39 (s, 9H); ¹³C NMR (75.4 MHz, CDCl₃) δ 170.9, 155.5, 154.0, 125.4, 97.0, 34.7, 30.9, 11.3; IR (neat) 1770, 1639, 1464, 1274 cm⁻¹; MS (*m*/*z*) 166 (M⁺, 59.06), 123 (100); HRMS calcd for C₁₀H₁₄O₂Na(MNa)⁺189.0886; Found 189.0894.

3.2.8. 3-Methyl-4-allyl-5-methylene-2(*5H*)-**furanone** (**3h**). The reaction of **1h** (77 mg, 0.5 mmol), CuCl₂ (269 mg, 2.0 mmol), K₂CO₃ (280 mg, 2.0 mmol), and Pd(PPh₃)₄ (5 mol%) in 3 mL of DMF at 70 °C for 12 h produced 50 mg (66%) of **3h**: liquid; ¹H NMR (300 MHz, CDCl₃) δ 5.86–5.72 (m, 1H), 5.15–5.08 (m, 3H), 4.84 (d, J=3.0 Hz, 1H), 3.21 (d, J=6.0 Hz, 2H), 1.92 (s, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 170.4, 154.8, 147.7, 132.4, 127.1, 117.5, 93.1, 28.9, 8.8; IR (neat) 1782, 1650, 1441, 1287 cm⁻¹; MS (*m*/*z*) 150 (M⁺, 36.37), 79 (100); HRMS calcd for C₉H₁₀O₂Na(MNa⁺) 173.0573; Found 173.0580.

3.2.9. 3-Methyl-4-benzyl-5-methylene-2(5*H***)-furanone (3i**). The reaction of **1i** (101 mg, 0.5 mmol), CuCl₂ (264 mg, 2.0 mmol), K₂CO₃ (282 mg, 2.0 mmol), and Pd(PPh₃)₄ (5 mol%) in 3 mL of DMF at 70 °C for 12 h produced 90 mg (89%) of **3i**: liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.32–7.13 (m, 5H), 5.08 (d, *J*=2.7 Hz, 1H), 4.81 (d, *J*=2.7 Hz, 1H), 3.82 (s, 2H), 1.94 (s, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 170.3, 154.9, 148.4, 136.5, 128.8, 128.1, 127.4, 126.9, 93.7, 30.6, 9.0; IR (neat) 1770, 1648, 1496, 1454, 1287 cm⁻¹; MS (*m*/*z*) 200 (M⁺, 41.10), 84 (100); HRMS calcd for C₁₃H₁₂O₂Na(MNa⁺) 223.0729; Found 223.0737.

3.2.10. 3-(*n*-Propyl)-5-methylene-2(5*H*)-furanone (3j). The reaction of **1j** (70 mg, 0.5 mmol), CuCl₂ (270 mg, 2.0 mmol), K₂CO₃ (286 mg, 2.0 mmol), and Pd(PPh₃)₄ (5 mol%) in 3 mL of DMF at 70 °C for 12 h produced 36 mg (51%) of **3j**: liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.02 (s, 1H), 5.08 (dd, *J*=1.2, 2.4 Hz, 1H), 4.76 (d, *J*=2.4 Hz, 1H), 2.38–2.28 (m, 2H), 1.66–1.54 (m, 2H), 0.95 (t, *J*=6.9 Hz, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 170.5, 153.9, 136.4, 128.5, 96.5, 27.1, 20.7, 13.6; IR (neat) 1767, 1465 cm⁻¹; MS (*m*/*z*) 138 (M⁺, 24.48), 84 (100); HRMS calcd for C₈H₁₀O₂Na(MNa)⁺ 161.0573; Found 161.0581.

3.2.11. 5-Methylene-2(5*H***)-furanone (3k).¹² The reaction of 1k (98 mg, 1.0 mmol), CuCl₂ (545 mg, 4.0 mmol), K₂CO₃ (550 mg, 4.0 mmol), and Pd(PPh₃)₄ (5 mol%) in 3 mL of DMF at 70 °C for 12 h produced 3k (31%) (determined by NMR using** *p***-methoxyiodobenzene as the internal standard).**

References and notes

- For some of the most typical recent reports, see: (a) Kang, S.; Ha, Y.; Ko, B.; Lim, Y.; Jung, J. Angew. Chem., Int. Ed. 2002, 41, 343. (b) Lee, K.; Seomoon, D.; Lee, P. Angew. Chem., Int. Ed. 2002, 41, 3901. (c) Brummond, K.; Chen, H.; Sill, P.; You, L. J. Am. Chem. Soc. 2002, 124, 15186. (d) Franzen, J.; Backvall, J. J. Am. Chem. Soc. 2003, 125, 6056. (e) Trost, B.; Jakel, C.; Plietrker, B. J. Am. Chem. Soc. 2003, 125, 4438. (f) Ohno, H.; Miyamura, K.; Takeoka, Y.; Tanaka, T. Angew. Chem., Int. Ed. 2003, 42, 2647. (g) Yang, F.; Shanmugasundaram, M.; Chuang, S.; Ku, P.; Wu, M.; Cheng, C. J. Am. Chem. Soc. 2003, 125, 12576.
- Modern Allene Chemistry; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, 2004.
- 3. For accounts, see: (a) Ma, S. Acc. Chem. Res. 2003, 36, 701.
 (b) Ma, S.; Li, L. Synlett 2001, 1206.
- For some of our most recent reports, see: (a) Ma, S.; Yu, Z. Angew. Chem., Int. Ed. 2002, 41, 1775. (b) Ma, S.; Yu, F.; Gao, W. J. Org. Chem. 2003, 68, 5943. (c) Ma, S.; Wu, B.; Shi, Z. J. Org. Chem. 2004, 69, 1429. (d) Ma, S.; He, Q. Angew. Chem., Int. Ed. 2004, 43, 988.
- (a) Ma, S.; Shi, Z. J. Org. Chem. 1998, 63, 6387. (b) Ma, S.; Duan, D.; Shi, Z. Org. Lett. 2000, 2, 1419.

- (a) Dean, F. M. Naturally Occurring Oxygen Ring Compounds; Butterworth: London, 1963.
 (b) Lu, X.; Huang, X.; Ma, S. Tetrahedron Lett. 1993, 34, 5963.
 (c) Kotora, M.; Negishi, E. Synthesis 1997, 121.
- Keiji, I.; Wataru, T.; Hisashi, T.; Katsumi, K. Agric. Biol. Chem. 1987, 51, 1045.
- (a) Stromgarad, K.; Nakanishi, K. *Curr. Org. Chem.* **1999**, *3*, 577.
 (b) Roupioz, Y.; Lhomme, J.; Kotero, M. J. Am. Chem. Soc. **2002**, *124*, 9129.
- (a) Franciseo, S. S.; Serafin, V.; Bernardo, H. *Tetrahedron: Asymmetry* **1996**, 7, 3209. (b) Rao, Y. S. *Chem. Rev.* **1976**, 76, 625. (c) Kido, F.; Noda, Y.; Yoshikoshi, A. *J. Am. Chem. Soc.* **1982**, *104*, 5509. (d) Nardo, C. D.; Jeroncic, L. O.; Lederkremer, R. M.; Varela, O. *J. Org. Chem.* **1996**, *61*, 4007. (e) Harrowven, D. C.; Wilden, J. D.; Tyte, M. J.; Hursthouse, M. B.; Coles, S. J. *Tetrahedron Lett.* **2001**, *42*, 1193.
- (a) Lai, G.; Anderson, W. K. Synth. Commun. 1995, 25, 4087.
 (b) Ralph, L.; Carsten, T.; Arne, L.; Frank, G.; Peter, Z. J. Mater. Chem. 1997, 7, 1713. (c) Brown, R. F. C.; Coulston, K. J.; Easteood, F. W.; Hill, M. P. Aust. J. Chem. 1988, 41, 215.
- 11. Crowlev, K. J. J. Am. Chem. Soc. 1963, 85, 1210.
- Okabe, M.; Sun, R.; Tam, S.; Todaro, T. L.; Coffen, D. L. J. Org. Chem. 1988, 53, 4780.