Catalytic coupling of N-benzylic sulfonamides with silylated nucleophiles at room temperature \dagger

Bai-Ling Yang and Shi-Kai Tian*

Received 5th April 2010, Accepted 30th June 2010 DOI: 10.1039/c0cc00765j

In the presence of 2–10 mol% of Tf₂NH, a range of *N*-benzylic sulfonamides smoothly react with allylic, propargylic, benzylic, or hydrido silanes at room temperature *via* sp³ carbon–nitrogen bond cleavage to afford structurally diverse products in moderate to excellent yields and with high chemo- and regioselectivity.

Benzylic halides are traditionally employed for the benzylic alkylation of nucleophiles under acidic conditions to construct carbon-carbon and carbon-heteroatom bonds through the cleavage of sp³ carbon-halogen bonds to generate benzyl cation intermediates (e.g. the Friedel-Crafts reaction).¹ Nevertheless, strongly acidic hydrogen halides are inevitably generated as byproducts in the reaction and are able to promote undesired side reactions such as elimination and overalkylation. In this regard, N-benzylic sulfonamides have recently emerged as useful benzylic alkylating agents to avoid such problems by yielding primary sulfonamides as byproducts, and consequently, to enhance reaction selectivity and efficiency. Certain Brønsted² and Lewis acids³ have been demonstrated to be able to catalyze the coupling of N-benzylic sulfonamides with protic nucleophiles, such as aromatics, active methylene compounds, thiols, thiocarboxylic acids, and sulfinic acids, which involves the catalytic cleavage of the sp³ carbon-nitrogen bonds to generate benzyl cation intermediates (Scheme 1). Herein, we wish to report an unprecedented coupling reaction of N-benzylic sulfonamides with silylated nucleophiles through acid-catalyzed sp³ carbon-nitrogen bond cleavage at room temperature.

We discovered recently a highly efficient alkylation reaction of protic carbon and sulfur nucleophiles with *N*-benzylic sulfonamides in the presence of a catalytic amount of

Scheme 1 Reactions of *N*-benzylic sulfonamides with various nucleophiles.

procedures, characterization data, and copies of ¹H and ¹³C NMR spectra for products. See DOI: 10.1039/c0cc00765j

ZnCl₂/TMSCl.^{3d} However, such a combination of double Lewis acids proved to be ineffective in catalyzing the coupling of N-benzylic sulfonamides with silylated nucleophiles. To find an effective catalyst, we evaluated a number of Brønsted and Lewis acids in the model reaction of N-toluenesulfonyl benzhydrylamine (1a) with allyltrimethylsilane (2a) in dichloromethane at room temperature (Table 1, entries 1-7). While the coupling reaction proceeded very sluggishly with many other acidic catalysts, the use of bis(trifluoromethanesulfonyl)imide (Tf₂NH) resulted in the formation of product 3a in 57% yield (Table 1, entry 3). It is noteworthy that Tf_2NH has been reported to react with allylic silane 2a to generate Tf₂N(TMS) that serves as the actual acidic catalyst.^{4,5} The efforts to enhance yield proved fruitless by replacing dichloromethane with chloroform, 1,2-dichloroethane, ethyl acetate, acetonitrile, or tetrahydrofuran (Table 1, entries 8-12) and by replacing the toluenesulfonyl group of sulfonamide 1a with another sulfonyl group, an acyl group, or an alkoxycarbonyl group (Table 1, entries 13-18). Finally, the yield was increased to 79% by employing 2.0 equiv. of allylic silane 2a in the reaction to suppress the unwanted alkylation of product 3a with sulfonamide **1a** (Table 1, entry 19).⁶

A range of N-bisbenzylic and N-monobenzylic sulfonamides coupled with allylic silane 2a in the presence of 2-10 mol% of Tf₂NH at room temperature to give the corresponding alkene products in moderate to excellent yields (Table 2, entries 1-8). Substituted allyltrimethylsilanes 2b and 2c also served as suitable substrates to couple with N-benzylic sulfonamides under similar reaction conditions (Table 2, entries 9-11). It is noteworthy that electron-rich aromatic rings and carbon-carbon triple bonds were well tolerated, and no rearrangement was observed for the carbon-carbon double bonds in the alkene products under the acidic reaction conditions.⁷ Moreover, excellent chemoselectivity was observed for the cleavage of the sp³ carbon-nitrogen bonds in N-benzylic N-alkyl sulfonamides. For example, secondary amine derivative 1i' exclusively donated its 4-methoxybenzyl group in the coupling reaction with allylic silane 2c in the presence of 10 mol% of Tf₂NH at room temperature (Table 2, entry 12).

The reaction of optically active *N*-benzylic sulfonamide **1f** (95% ee) with allylic silane **2a** under similar conditions afforded alkene **3f** in nearly racemic form (Table 2, entry 6). This result suggests that a benzyl cation is generated from the corresponding *N*-benzylic sulfonamide through catalytic sp³ carbon–nitrogen bond cleavage and consequently, the coupling reaction is confirmed to proceed *via* an S_N1 mechanism as shown in Scheme 1.^{2,3}

Next, a few other types of silylated carbon nucleophiles were examined with regard to their reactivity toward *N*-benzylic

Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China. E-mail: tiansk@ustc.edu.cn; Fax: (+86) 551-360-1592; Tel: (+86) 551-360-0871 † Electronic supplementary information (ESI) available: Experimental

Table 1 Optimization of reaction conditions ^a						
۲ Ph´ 1a	IN ^{∕X} ↓ _{Ph} + ⊦1ag	SiMe ₃	atalyst (10 mol %) Ph Ph 3a			
Entry	1a–1ag	X	Catalyst	Solvent	Yield $(\%)^b$	
1	1a	Ts	H_2SO_4	CH_2Cl_2	0	
2	1a	Ts	TfOH	CH_2Cl_2	Trace	
3	1a	Ts	Tf ₂ NH	CH_2Cl_2	57	
4	1a	Ts	TMSOTf	CH_2Cl_2	Trace	
5	1a	Ts	FeCl ₃	CH_2Cl_2	Trace	
6	1a	Ts	InCl ₃ ·4H ₂ O	CH_2Cl_2	0	
7	1a	Ts	SnCl ₄ ·5H ₂ O	CH_2Cl_2	14	
8	1a	Ts	Tf ₂ NH	CHCl ₃	19	
9	1a	Ts	Tf ₂ NH	$(ClCH_2)_2$	45	
10	1a	Ts	Tf ₂ NH	EtOAc	10	
11	1a	Ts	Tf ₂ NH	MeCN	14	
12	1a	Ts	Tf ₂ NH	THF	0	
13	1ab	$4-O_2NC_6H_4SO_2$	Tf ₂ NH	CH_2Cl_2	22	
14	1ac	$2,4,6\text{-}Me_3C_6H_2SO_2$	Tf_2NH	CH_2Cl_2	26	
15	1ad	2-thienylsulfonyl	Tf_2NH	CH_2Cl_2	19	
16	1ae	$n-C_8H_{17}SO_2$	Tf ₂ NH	CH_2Cl_2	Trace	
17	1af	PhCO	Tf_2NH	CH_2Cl_2	0	
18	lag	PhCH ₂ OCO	Tf ₂ NH	CH_2Cl_2	0	
19 ^c	1a	Ts	Tf ₂ NH	CH_2Cl_2	79	

^a Reaction conditions: amine derivative **1a-1ag** (0.20 mmol), allylic silane 2a (0.24 mmol), catalyst (10 mol%), solvent (0.30 mL), rt, 24 h. ^b Isolated yield. ^c 0.40 mmol of allylic silane 2a was used.

sulfonamides under acidic conditions. The desilylative coupling of propargylic silane 4a with sulfonamide 1g proceeded smoothly in the presence of 10 mol% Tf₂NH at room temperature to give allene 5a in a moderate yield (eqn (1)). Notably, a highly regioselective Friedel-Crafts reaction rather than a desilylative coupling reaction took place between benzylic silane 6a and sulfonamide 1a under similar reaction conditions (eqn (2)), and significantly, the trimethylsilyl group preserved in the resulting Friedel-Crafts product can serve as a handle for further synthetic elaboration.^{8,9}

Finally, a range of N-bisbenzylic and N-monobenzylic sulfonamides were reduced smoothly with triethylsilane (1.2 equiv.) in the presence of 2–10 mol% of Tf_2NH at room temperature to give the corresponding products in good to excellent yields (Table 3). It is noteworthy that the sulfonamido groups were removed cleanly without reduction of the carbon-carbon multiple bonds present in N-benzylic sulfonamides 1g and 1h (Table 3, entries 4 and 5).

Table 2	Catalytic coupling	of	N-benzylic	sulfonamides	with	allylic
silanes ^a						

Entry	Sulfonamide		2	Product		Time/ h	Yield $(\%)^b$
1	NHTs Ph [↓] Ph	1a	2a	Ph	3a	24	79
2	Ph OMe	1b	2a	Ph	3b	22	88
3	NHTs Ph	1c	2a	Ph	3c	30	52
4	Ph Ph	1d	2a	Ph	3d	24	70
5	NHTs	1e	2a		3e	3	91
6	NHTs OMe (95% ee)	1f	2a	(3% ee)	3f	4	81
7	NHTs Ph Ph	1g	2a	Ph	3g	1	97
8 ^c	Ph Ph	1h	2a	Ph	3h	24	45
9 ^c		1g	2b	Ph	3i	4	95
10		1a	2c	Ph Ph Ph	3j	12	83
11	NHTs OMe	1i	2c	Ph	3k	12	75
12	N(Me)Ts	1i′	2c		3k	5	71

^a Reaction conditions: sulfonamide 1 (0.20 mmol), allylic silane 2 (0.40 mmol), Tf₂NH (10 mol%), dichloromethane (0.30 mL), rt. ' Isolated yield. ^c 2 mol% of Tf₂NH was used.

In summary, we have developed an unprecedented coupling reaction of N-benzylic sulfonamides with silvlated nucleophiles through catalytic sp³ carbon-nitrogen bond cleavage under acidic conditions. In the presence of 2-10 mol% of

View	Arti	cle	Onl	ine

Table 3	Catalytic reduction of N-benzylic sulfonamides with trie	ethyl
silane ^a		

	Ar R + I	$Et_3SiH = \frac{Tf_2NH (10 mm)}{CH_2Cl_2, r}$	bl %) t	Ar R 8	
Entry	Sulfonamide	Product		Time/ h	Yield $(\%)^b$
1	1a	Ph Ph	8a	5	93
2	1b	Ph	8b	2	98
3 ^{<i>c</i>}	1c	Ph	8c	2	99
4	1g	Ph Ph	8d	1	98
5	1h	Ph	8e	8	73
6	NHTs Ph	Ph	8f	48	71
	IJ				

 ^a Reaction conditions: sulfonamide 1 (0.20 mmol), Et₃SiH (0.24 mmol), Tf₂NH (10 mol%), dichloromethane (0.30 mL), rt. ^b Isolated yield.
^c 2 mol% of Tf₂NH was used.

Tf₂NH, a range of *N*-bisbenzylic and *N*-monobenzylic sulfonamides smoothly react with allylic, propargylic, benzylic, or hydrido silanes at room temperature to afford structurally diverse products in moderate to excellent yields and with high chemo- and regioselectivity. This study adds a useful entry to the synthetic applications of sp³ carbon–nitrogen bond cleavage.

We are grateful for the financial support from the National Natural Science Foundation of China (20972147 and 20732006), the National Basic Research Program of China (973 Program 2010CB833300), and the Chinese Academy of Sciences.

Notes and references

- 1 For a review, see: G. A. Olah, R. Krishnamurti and G. K. Surya, in *Comprehensive Organic Synthesis*, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 3, p. 293.
- (a) M. R. Seong, H. J. Lee and J. N. Kim, *Tetrahedron Lett.*, 1998, 39, 6219; (b) H.-H. Li, D.-J. Dong and S.-K. Tian, *Eur. J. Org.*

Chem., 2008, 3623; (c) D. Enders, A. A. Narine, F. Toulgoat and T. Bisschops, Angew. Chem., Int. Ed., 2008, 47, 5661; (d) C.-R. Liu, M.-B. Li, D.-J. Cheng, C.-F. Yang and S.-K. Tian, Org. Lett., 2009, 11, 2543; (e) Q.-L. He, F.-L. Sun, X.-J. Zheng and S.-L. You, Synlett, 2009, 1111; (f) F.-L. Sun, X.-J. Zheng, Q. Gu, Q.-L. He and S.-L. You, Eur. J. Org. Chem., 2010, 47.

- 3 (a) J. Esquivias, R. Gómez-Arrayás and J. C. Carretero, Angew. Chem., Int. Ed., 2006, 45, 629; (b) I. Alonso, J. Esquivias, R. Gómez-Arrayás and J. C. Carretero, J. Org. Chem., 2008, 73, 6401; (c) C.-R. Liu, M.-B. Li, C.-F. Yang and S.-K. Tian, Chem. Commun., 2008, 1249; (d) C.-R. Liu, M.-B. Li, C.-F. Yang and S.-K. Tian, Chem.-Eur. J., 2009, 15, 793.
- 4 For examples, see: (a) B. Mathieu and L. Ghosez, *Tetrahedron Lett.*, 1997, 38, 5497; (b) N. Kuhnert, J. Peverley and J. Robertson, *Tetrahedron Lett.*, 1998, 39, 3215; (c) K. Ishihara, Y. Hiraiwa and H. Yamamoto, *Synlett*, 2001, 1851; (d) B. Mathieu and L. Ghosez, *Tetrahedron*, 2002, 58, 8219; (e) M.-J. Tranchant, C. Moine, R. B. Othman, T. Bousquet, M. Othman and V. Dalla, *Tetrahedron Lett.*, 2006, 47, 4477; (f) K. Takasu, N. Hosokawa, K. Inanaga and M. Ihara, *Tetrahedron Lett.*, 2006, 47, 6053.
- 5 In sharp contrast, only a trace amount of product **3a** was observed by thin layer chromatography (TLC) analysis for the reaction in the presence of 10 mol% of TfOH (Table 1, entry 2), a stronger Brønsted acid relative to Tf₂NH (p K_a values in acetic acid: 4.2 and 7.8, respectively). Both Brønsted acids have been reported to serve as precatalysts that react with allylic silane **2a** to generate the corresponding actual catalysts, TfO(TMS) and Tf₂N(TMS). Significantly, Tf₂N(TMS) has been demonstrated to exhibit stronger Lewis acidity relative to TfO(TMS) according to ²⁹Si NMR analysis. See ref. 4*a* and *d*.
- 6 The reaction of allylic silane 2a with benzhydryl bromide, a conventional benzylic alkylating agent, afforded product 3a in 53% yield in the presence of 10 mol% of Tf₂NH at room temperature. Byproduct TMSBr was generated in this reaction and could promote undesired side reactions that consumed product 3a. For examples of the reaction of allylic silanes with benzylic halides under acidic conditions, see: (a) Y. Morizawa, S. Kanemoto, K. Oshima and H. Nozaki, *Tetrahedron Lett.*, 1982, 23, 2953; (b) H. Mayr and R. Pock, *Tetrahedron*, 1986, 42, 4211; (c) G. Hagen and H. Mayr, J. Am. Chem. Soc., 1991, 113, 4954; (d) J.-P. Dau-Schmidt and H. Mayr, Chem. Ber., 1994, 127, 205; (e) H. Mayr, G. Gorath and B. Bauer, Angew. Chem., Int. Ed. Engl., 1994, 33, 788.
- 7 However, a higher catalyst loading and prolonged reaction time resulted in the rearrangement of 1,1-disubstituted carbon–carbon double bonds. For example, the reaction of sulfonamide **1g** with allylic silane **2b** proceeded in the presence of 10 mol% of Tf₂NH at room temperature for 6 h to afford a 9:91 mixture of product **3i** and (1*E*)-1,3-diphenyl-5-methyl-1,4-hexadiene (**3i**').
- 8 For reviews, see: (a) I. Fleming, A. Barbero and D. Walter, *Chem. Rev.*, 1997, 97, 2063; (b) G. L. Larson, *J. Organomet. Chem.*, 1992, 422, 1.
- 9 The reaction of vinyltriphenylsilane with sulfonamide 1a was very sluggish in the presence of 10 mol% of Tf₂NH at room temperature. By contrast, a complex mixture was obtained from the reaction of trimethyl(phenylethynyl)silane with sulfonamide 1a under similar conditions.