Ionic–Molecular Isomerism in Chlorophenylphosphoranes Ph_nPCI_{5-n} (1 $\leq n \leq$ 3)

Mohammad A. H. A. Al-Juboori, Peter N. Gates* and Alan S. Muir

Department of Chemistry, Royal Holloway and Bedford New College, Egham Hill, Egham, Surrey TW20 0EX, UK

Both ionic and molecular modifications of the three chlorophenylphosphoranes Ph_nPCI_{5-n} ($1 \le n \le 3$) have been isolated for the first time as solids and all have been characterised by elemental analysis, Raman spectroscopy and ³¹P magic angle spinning (MAS) NMR spectroscopy.

Various types of isomerism are well-known for the halophosphoranes;¹ these include ionic–molecular isomerism accompanying phase change {*e.g.* PF₃Cl₂ which is pseudo trigonal bipyramidal (ψ tbp) in the gas phase but [PCl₄]+[PF₆]⁻ in the solid} and solid state ionic isomerism (*e.g.* [PCl₄]+[PCl₆]⁻ and [PCl₄]₂+[PCl₆]-[Cl]⁻).² Organochlorophosphoranes are usually either molecular ψ tbp, R_nPCl_{5-n}, or ionic, [R_nPCl_{4-n}]+[Cl]⁻,³ but very recently an example of a phase change isomerism was reported in which a molecular form

transformed into an ionic solid which for the first time contained both anionic and cationic phosphorus species;⁴ Cl₄P(CH₂Cl)(c) was formulated as [Cl₃P(CH₂Cl)]⁺[Cl₅P-(CH₂Cl)]⁻ on the basis of ³¹P MAS NMR spectroscopy,⁴ analogous to the normal solid-state PCl₅, *viz*. [PCl₄]⁺[PCl₆]⁻.² There has been some ambiguity about the nature of the chlorophenylphosphoranes Ph_nPCl_{5-n}($1 \le n \le 3$) in solution.⁵ This has arisen largely as a result of (*i*) possible trihalide anion formation, (*ii*) complexation with chlorocarbon solvents and

	PhPCl ₄	Ph ₂ PCl ₃	Ph ₃ PCl ₂	[PhPCl ₃] ⁺ [Cl] ⁻	[Ph ₂ PCl ₂]+[Cl]-	[Ph ₃ PCl]+[Cl]-	Assignment
v(PCl)/cm ^{-1a}	268 350	276 335	274 c	538	567	593	$v_{sym}(ax)$ v_{sym} $v_{svm}(eq)$
	304 525	297 e	d c	619	607	e	$v_{asym}(ax)$ v_{asym} $v_{asym}(eq)$
δ(³¹ P) ^b	-34.7	f	-6.5	76.6	84.1	52.9	

^{*a*} Assignments partly based on comparison with isoelectronic Si species (ref. 10). ^b Spectra recorded at 121.49 MHz under MAS conditions, chemical shifts quoted relative to 85% H_3PO_4 . Values consistent with any available data (ref. 6). ^c No equatorial P–Cl bond. ^{*d*} Raman inactive. ^{*e*} No antisymmetric stretch. ^{*f*} Unreliable measurement.

Fig. 1 Comparison of Raman spectra of (a) $[PhPCl_3]^+[Cl]^-$ and $\psi tbp PhPCl_4$ (* = residual $\psi tbp PhPCl_4$), (b) $[Ph_2PCl_2]^+[Cl]^-$ and $\psi tbp Ph_2PCl_3$, (c) $[Ph_3PCl]^+[Cl]^-$ and $\psi tbp Ph_3PCl_2$

(*iii*) suggested equilibria between ψ tbp and ionic species in certain solvents. However, in the solid-state, ³¹P NMR and ³⁵Cl nuclear quadrupole resonance (NQR) evidence permits both PhPCl₄ and Ph₂PCl₃ to be convincingly formulated as ψ tbp species whereas Ph₃PCl₂ is ionic, [Ph₃PCl]+[Cl]^{-.6} Clearly there is a fine energetic balance between the two structural types and we have explored various synthetic methods with a view to isolating both ionic and molecular isomers of the chlorophenylphosphoranes in the solid-state.

Accordingly, we have attempted to isolate ionic isomers of PhPCl₄ and Ph₂PCl₃ and a ψ tbp isomer of Ph₃PCl₂. For the ionic syntheses we have recrystallised the easily prepared (chlorination in toluene) molecular forms of PhPCl₄ and Ph_2PCl_3 from anhydrous HCl (-90 °C) and permitted the HCl to evaporate slowly at -10 °C. The intention was to produce the ionic $[Ph_nPCl_{4-n}]^+[HCl_2]^-$ species; ⁷ subsequent decomposition at the higher temperature would yield the desired $[Ph_nPCl_{4-n}]^+[Cl]^-$ modifications if they possessed sufficient kinetic stability. In the case of PhPCl₄, loss of all HCl was spontaneous at -10 °C and left a white solid which rapidly changed (ca. 1 h) to the ψ tbp form as monitored by chloride analysis and Raman spectroscopy. For Ph₂PCl₃, pumping of the recrystallised solid at -10 °C (10 h) yielded a product for which chloride analysis was consistent with that expected for Ph₂PCl₃ and the Raman spectrum of which clearly showed a set of bands corresponding to the [Ph2PCl2]+ cation, as observed for various Lewis acid derivatives. The ionic modification proved to be stable at ambient temperature over a period of months, but warming to ca. 180 °C induced some irreversible change to the wtbp form. The Raman spectra of these ionic modifications are compared with the appropriate ψ tbp forms in Fig. 1(*a*) and (*b*).

Passage of chlorine gas through a solution of Ph₃P in toluene yields the well-established ionic solid $[Ph_3PCl]^+[Cl]^-$; the presence of the cation was confirmed in the present work by comparison of the Raman spectrum with those for several Lewis acid salts. However, a milder chlorination (passage of Cl₂ gas over the surface of a solution of Ph₃P in toluene) yielded a white solid whose chloride analysis was in good agreement with that required for Ph₃PCl₂ and whose Raman spectrum is clearly different from that of the ionic species [Fig. 1(c)]. The spectrum is consistent with that for a D_{3h} top species and shows a good correspondence with that of the wellestablished Ph₃AsCl₂.⁸ Assignments for the principal P–Cl stretching modes in both the ionic and molecular isomers of all three chlorophenylphosphoranes discussed are shown in Table 1, together with appropriate δ^{31} P values obtained by MAS NMR; these chemical shifts compare well with any previously available data⁶ and generally fall within the predicted 4 and 5 coordination ranges,⁹ thus confirming the Raman observations.

A more complete vibrational assignment of these compounds, aided by comparison with isoelectronic chlorophenylsilanes,¹⁰ will be reported elsewhere together with further details of preparations, complexation behaviour and thermochemistry.

Received, 13th May 1991; Com. 1/02243A

References

- 1 N. N. Greenwood, J. Chem. Soc., Dalton Trans., 1991, 565 and references cited therein.
- 2 A. Finch, P. N. Gates, H. D. B. Jenkins and K. P. Thakur, J. Chem. Soc., Chem. Commun., 1980, 579.
- 3 D. E. C. Corbridge, *Phosphorus—An Outline of its Chemistry*, *Biochemistry and Technology*, Elsevier, Amsterdam, 1978.
- 4 K. B. Dillon and T. A. Straw, J. Chem. Soc., Chem. Commun., 1991, 234.
- R. Rabinowitz and R. Marcus, J. Am. Chem. Soc., 1962, 84, 1312;
 G. A. Wiley and W. R. Stine, *Tetrahedron Lett.*, 1967, 24, 2321;
 D. B. Denney, D. Z. Denney and B. C. Chang, J. Am. Chem. Soc., 1968, 90, 6332;
 G. G. Arzoumanidis, J. Chem. Soc., Chem. Commun., 1969, 217;
 K. B. Dillon, R. N. Reeve and T. C. Waddington, J. Inorg. Nucl. Chem., 1976, 38, 1439.
- 6 K. B. Dillon, R. J. Lynch, R. N. Reeve and T. C. Waddington, J. Chem. Soc., Dalton Trans., 1976, 1243; B. V. Timokhin, V. P. Feshin, V. I. Dmitriev, V. I. Glukhikh, G. V. Dolgushin and M. G. Voronkov, Dokl. Akad. Nauk SSSR, 1977, 236, 938; K. B. Dillon, R. N. Reeve and T. C. Waddington, J. Chem. Soc., Dalton Trans., 1978, 1318.
- 7 I. Tornieporth-Oetting and T. Klapotke, J. Organomet. Chem., 1989, **379**, 251; R. Kohle, W. Kuchen and W. Peters, Z. Anorg. Allg. Chem., 1987, **551**, 179.
- 8 D. M. Revitt and D. B. Sowerby, *Spectrochim. Acta, Part A*, 1970, **26**, 1581.
- 9 J. M. Letcher and J. R. Van Wazer, *Topics in Phosphorus Chemistry*, eds. M. Grayson and E. J. Griffiths, Wiley, New York, 1967, vol. 5.
- 10 A. L. Smith, Spectrochim. Acta, Part A, 1967, 23, 1075.