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ABSTRACT: 1 

Due to the key roles of auxins as master regulators of plant growth, there is 2 

considerable interest in the development of compounds with auxin-like properties for 3 

growth management and weed control applications. Herein, we describe the design and 4 

multi-step synthesis of ten compounds bearing combinations of functional groups 5 

commonly associated with auxin-type properties. Following synthesis, these compounds 6 

were tested against multiple weed species as well as sweet corn. In general, while 7 

these structures were not quite as active as commercial auxin mimic herbicides, 8 

multiple compounds exhibited broadleaf weed activity with concurrent selectivity in 9 

sweet corn. In addition, differential results were observed upon subtle changes to 10 

structure, providing insights into the structural properties required for activity.  11 

KEYWORDS: auxins, weed science, synthesis, plant growth 12 

  13 

Page 3 of 23

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



4 
 

INTRODUCTION 14 

Auxins are an important class of plant growth substances called phytohormones 15 

that play essential roles in many growth and behavioral processes in a plant’s life cycle.  16 

There are four natural auxins that are synthesized by plants (Figure 1): indole-3-acetic 17 

acid (IAA), indole-3-butyric acid (IBA), 4-chloroindole-3-acetic acid (4-Cl-IAA), and 18 

phenylacetic acid (PAA).1 Since IAA influences almost every part of plant growth and 19 

development, it is believed to act as a “master hormone” in the network of interactions 20 

with other phytohormones.2 In general, auxins regulate cell division, elongation, and 21 

developmental processes, which include vascular tissue and floral meristem 22 

differentiation, leaf initiation, phyllotaxy, senescence, apical dominance, and root 23 

formation.3 24 

The stability and concentration of natural auxins is regulated by the plant through 25 

synthesis, conjugation, and degradation via multiple pathways.4  At low auxin 26 

concentrations, growth and developmental activities are stimulated, while at high 27 

concentration, growth is interrupted, and the plant is lethally damaged.  As a result, 28 

there has been considerable interest in the chemical manipulation of the auxin system 29 

via synthetic analogs in order to study auxin function.5  In the 1940s, various derivatives 30 

of IAA were synthesized that exhibited auxin-like properties.  These included 1-31 

naphthalene acetic acid (1-NAA, Figure 1), 2-methyl-4-chlorophenoxyacetic acid 32 

(MCPA), and 2,4-dichlorophenoxyacetic acid (2,4-D).6  They produce the same plant 33 

responses as IAA but are more durable and effective because they are not rendered 34 

inactive by the plant as rapidly as the endogenous auxins.7 35 
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Synthetic auxin mimics have found practical use not only as growth regulators for 36 

improving yields in agriculture and horticulture,8 and as media components in tissue 37 

culture and plant micropropagation,9 but also as herbicides to control weeds.6  MCPA 38 

and 2,4-D launched a new era of weed control in modern agriculture after being 39 

introduced to the worldwide market after World War II.  In fact, multiple classes of 40 

chemistry have been commercially produced as herbicides.  These include the benzoic 41 

acids, the phenoxy-carboxylic acids, the pyridine-carboxylic acids, the pyrimidine-42 

carboxylic acids, and the quinolone-carboxylic acids.  To possess auxin activity, a 43 

chemical structure appears to need a strong negative charge on a carboxylic acid group 44 

that is separated by a distinct distance from a weaker positive charge on an aromatic 45 

ring.10  When used as herbicides, synthesized auxins mimic the growth-inhibiting effects 46 

as those caused by IAA applied at high concentrations, which is also observed in 47 

transgenic, IAA-overproducing plants.11  This occurrence has been described as an 48 

“auxin overdose,” which is an effect of greater-than-optimal endogenous auxin 49 

concentrations, causing an imbalance in auxin homeostasis and interactions with other 50 

hormones in the tissue.7 51 

 More recent research in auxin mimic herbicides has uncovered more potent 52 

inhibitors with greater activity on more weed species at lower use rates.  These newer 53 

herbicides contain a carboxylic acid and halogen (primarily chlorine and fluorine) 54 

substitutions on pyridine or pyrimidine like other auxin mimic herbicides, but these 55 

compounds are different due to a para-chlorophenyl substituent at the 4-position of the 56 

heterocyclic ring.12-14  Currently, no research has been presented as to whether this 57 
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para-chlorophenol substituent would be efficacious if added to benzyl or indole ring 58 

structure.  Therefore, the objectives of this research were to 1) synthesize benzyl and 59 

indole ring structures containing a carboxylic acid, at least one halogen, and a para-60 

chlorophenol substituent and 2) to evaluate these new compounds for weed control and 61 

safety to sweet corn (Zea mays L. var. saccharum) in comparison to the commercial 62 

auxin standards of aminocyclopyrachlor, dicamba, and quinclorac. 63 

MATERIALS AND METHODS 64 

Chemicals 65 

Dicamba (forumulated as Clarity) and quinoclorac (formulated as Drive) were obtained 66 

from the BASF Corporation and used as received. Aminocyclopyrachlor (DPX-MAT28, 67 

formulated as a 50% active granule) was obtained from DuPont Crop Protection. 68 

Starting materials and reagents for synthetic procedures were obtained from Fisher 69 

Scientific or Aldrich Chemical and used as received. 70 

General experimental 71 

a Pure solvent delivery system purchased from Innovative Technology, Inc. Column 72 

chromatography was performed using 230−400 mesh silica gel purchased from Sorbent 73 

Technologies. NMR spectra were obtained using Varian Mercury Vx 300 MHz or Bruker 74 

AC 250 MHz spectrometers.  75 

Compound evaluation for weed control 76 

Greenhouse trials were established at the University of Tennessee (35.98 N, 77 

83.91W) to evaluate the herbicidal activity of the synthesized compounds. Herbicidal 78 

response of the compounds was evaluated on sweet corn, large crabgrass (Digitaria 79 
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sanguinalis), field bindweed (Convolvulus arvensis), barnyardgrass (Echinochloa crus-80 

gali), velvetleaf (Abutilon theophrasti), and redroot pigweed (Amaranthus retroflexus). 81 

These specific weed species were selected in order to provide a mix of common small 82 

and large seeded monocot and dicot species. Four sweet corn seeds were planted in 83 

the middle of 23 cm diameter greenhouse pots (XAM09000, Dillen Products/Myers 84 

Industries Inc., Middlefield, OH) containing a potting media (Pro-Mix BX Mycorrhizae, 85 

Premier Tech Horticulture Inc., Quakertown, PA). Weed species were shallowly seeded 86 

around the margin of each greenhouse pot. Plants germinated and were allowed to 87 

grow for 12 days before application of experimental compounds. On the dates of 88 

application corn plants were approximately 15 cm in height. Weed species height 89 

ranged from 3 to 6 cm. Following these herbicide applications, plants were watered 90 

daily, fertilized as needed, and were augmented with artificial lights as needed to 91 

maintain adequate day length.  92 

Compounds were dissolved in 3 mL of acetone before being added to 32 mL of 93 

deionized water and agitated by hand to form a spray solution. Crop oil concentrate was 94 

added to the spray solution to form a 1% v/v solution used for each treatment (Agridex, 95 

Helena Chemical Corp., Memphis, TN).  Spray solutions were agitated again before 96 

application to the plant species using an enclosed sprayer chamber (Generation III track 97 

sprayer. DeVries Manufacturing, Hollandale, Minnesota) at 215 L ha-1 through an 8004 98 

EVS nozzle (TeeJet, Wheaton, Illinois). All compounds were applied at a rate of 500 g 99 

ha-1. Herbicidal activity was quantified by visually measuring injury to each plant species 100 
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10 days after treatment on a 0 (i.e., no injury) to 100 % (i.e., complete plant death) scale 101 

relative to a non-treated check. 102 

RESULTS AND DISCUSSION 103 

The goal of this research was to develop novel auxin mimic herbicides through 104 

the design and chemical synthesis of structures with similar properties to known auxin 105 

herbicides, followed by evaluation of herbicidal activities alongside three commercial 106 

herbicides, aminocyclopyrachlor,15 dicamba,16 and quinclorac17 (Figure 2).  Overall, ten 107 

compounds were synthesized and evaluated for auxin herbicidal activity (1-7). 108 

The initial set of compound targets is shown in Figure 3A-C, each of which 109 

contains a para-chlorophenyl group fused to an aromatic unit bearing a carboxylic acid 110 

as well as different combinations of heteroatoms within the ring. These compounds 111 

were synthesized through a general scheme by converting commercially available 112 

carboxylic acids 8a-b, 11a-b, and 14a-b, to methyl esters 9a-b, 12a-b, and 13a-b, 113 

respectively. This was followed by reaction with 4-chlorophenylboronic acid via a Suzuki 114 

coupling to attach a chlorophenyl group of 10a-b, 13a-b, and 16a-b,18 and then ester 115 

hydrolysis in base to restore the carboxylic acid functionality of target compounds 1a-b, 116 

2a-b, and 3a-b.   117 

A similar process was used to access target compounds 4-5, which also contain  118 

a para-chlorophenyl fused to different functionalized benzoic acid moieties (Figure 4A-119 

C). To synthesize 4, commercially available carboxylic acid 17 was first converted to 120 

methyl ester 18. Next, the phenolic moiety of 18 was protected with a para-121 

methoxybenzyl (PMB) group to produce intermediate 19, which was coupled to 4-122 
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chlorobronic acid to 20, followed by PMB deprotection to 21 and ester hydrolysis to 123 

access 4. For the synthesis of 5, compound 22 was first subjected to nitration and 124 

esterification to form 23, followed by reduction of the nitro group to the amine 125 

functionality of 24. Finally Suzuki coupling to 27 and ester hydrolysis produced target 126 

compound 5. 127 

For the next set of compounds, we fused the para-chlorophenyl group that has been 128 

effective in prior auxin herbicides to the indole acid moiety of natural auxins (Figure 5).  129 

Here, compounds 6-7 were accessed through general schemes through the 130 

esterification of carboxylic acids 26 and 29 to 27 and 30, Suzuki coupling to 28 and 31, 131 

and ester hydrolysis to 6 and 7, respectively. 132 

Following the synthesis of the desired compounds, the herbicidal activities of 133 

these structures next evaluated in plant bioassays. The synthesized molecules were 134 

applied in the form of a spray solution to six different common weeds (redroot pigweed, 135 

velvetleaf, field bindweed, barnyardgrass, large crabgrass, and yellow nutsedge) as well 136 

as sweet corn. An ideal herbicide would be highly active against all the weeds but show 137 

little to no activity against crops such as corn.  Most auxin herbicides typically have their 138 

greatest activity against dicot weeds as opposed to monocots. This differentiated 139 

selectivity has allowed auxin mimics to be used in monocot crops for the control of dicot 140 

weeds.  However, quinoline-carboxylic acid auxin herbicides like quinclorac and the new 141 

6-aryl-picolinate herbicides do maintain some herbicidal activity on key monocot grass 142 

and sedge species12,19. The commercial auxin mimic herbicides aminocyclopyrachlor, 143 
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dicamba, and quinclorac were tested alongside the newly synthesized compounds 144 

(Figure 2).  145 

Out of the synthetic compounds, 2-chlorobenzoic acid 1a provided the greatest 146 

level of activity, with about 90% control of pigweed, and only 2% injury to corn (Table 1). 147 

In addition, 1a controlled velvetleaf 58%, however all other species were controlled by 148 

this analog 30% or less. Small substitution changes to 1a changed weed control, 149 

especially on redroot pigweed.  For example, introduction of the fluorine instead of a 150 

chlorine on the benzoic acid ring of analog 1b diminished redroot pigweed and 151 

velvetleaf to 55 and 10%, respectively.  A simple introduction of nitrogen into the 6-152 

position of the benzoic acid ring in compound 2b drastically reduced redroot pigweed to 153 

53%, but velvetleaf control declined to only 43%.  However, in compound 2a the 154 

nitrogen placed in the ring at the 3-position reduced control of both redroot pigweed and 155 

velvetleaf to 3% or less.  Curiously, the addition of an amine in the meta position relative 156 

to both the carboxylic acid and chlorophenyl groups in analog 5 reduced redroot 157 

pigweed and velvetleaf to 40% and 17%, respectively.  Several potent commercial auxin 158 

mimic herbicides contain amine group substitutions in a similar position (e.g., 159 

aminopyralid, picloram, aminocylclopyrachlor, and halauxifen).  In many instances these 160 

amine substituted compounds are more potent when compared to similar auxin mimics 161 

that lack this substitution.12  The two indole acids, compounds 6 and 7, displayed 162 

modest activity (<50% control) on all species evaluated with few differences between 163 

analogs. Symptoms expressed by these experimental analogs were primarily epinasty, 164 

which progressed to stunting, chlorosis and necrosis only on the most sensitive weed 165 
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species and only with the most potent analogs. These visual phenotypic responses 166 

were similar to those associated with the auxin mimic herbicide standards included in 167 

the trial. The only exception to this activity was the commercial standard quinclorac 168 

activity on grass, which included some reddening symptoms on grasses consistent with 169 

a secondary herbicide site of action. 170 

Overall, these synthesized auxin mimics did not reach the performance level of 171 

the commercial auxin mimic herbicides, with the exception of compound 1a, which did 172 

provided 90% control of redroot pigweed with adequate corn selectivity. However, this 173 

compound did not provide broad-spectrum control of all weeds or even all broadleaf 174 

weeds in these studies as observed with the commercial standards 175 

aminocyclopyrachlor and dicamba (Table 1). These studies show that the 2-chloro 176 

benzoic acid (1a) is significantly more herbicidal than the 2-fluoro benzoic acid version 177 

(1b). Additionally, while the 2-chloro substitution increases herbicidal response there is 178 

also evidence from evaluating compounds 3a and 3b that an additional 4-position 179 

chlorine substitution on the benzoic acid ring may also be beneficial. While pyridine and 180 

pyrimidine structures seem to be optimal for auxin mimic potency, our studies confirm 181 

that the specific placement of the nitrogen in the pyridine rings is critical for maximizing 182 

herbicidal performance (2a and 2b). In addition, using a benzoic acid or indole acid 183 

model for coupling with a para-chlorophenol moiety does not appear to be as active as 184 

similar pyridine or pyrimidine versions reported in the literature.12,13 Overall, these 185 

results show that subtle modifications in the structure of molecular scaffolds can have 186 

substantial effects on auxin herbicidal activity. In future work, it would be interesting to 187 
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understand these activities in the context of the structures of protein binding partners, 188 

particularly since the crystal structure of the auxin target TIR1 from Arabidopsis has 189 

been reported.20 This provides a valuable model for understanding the properties of 190 

compounds that exhibit auxin-like properties and for predicting new compounds 191 

expected to be active.  192 
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Figure Captions 262 

Figure 1. Structures of natural and synthetic auxins 263 

Figure 2. Commercial herbicides used as controls in testing auxin activities. 264 

Figure 3. Generalized synthesis of initial targets compounds A. 1a-b, B. 2a-b, and C. 265 

3a-b. 266 

Figure 4.. Synthesis of targets compounds A. 4, and B. 5 267 

Figure 5. Synthesis of targets compounds A. 6, and B. 7 268 

Table I. Activity of compounds 1-7 applied postemergence for control of key broadleaf 269 

and grass weeds with potential selectivity in sweet corn. 270 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Table I.  Activity of compounds 1-7 applied postemergence for control of key broadleaf and grass weeds with potential selectivity in sweet corn. 

 

Herbicide analoguea 

 

Rate 

Redroot 

Pigweedb 
Velvetleaf 

Field 

Bindweed 

Barnyardgrass 

Large 

Crabgrass 

 
Yellow 

Nutsedge 

Sweet Corn 

 g ai/ha ———————————————— % ——————————— 

1a 500 90 58 10 5 30 0 2 

1b 500  55 10 3 15 8 0 2 

2a 500 3 0 3 13 0 0 10 

2b 500 53 43 25 3 12 10 7 

3a 500 52 40 22 20 23 7 27 

3b 500 28 20 13 20 30 3 27 

4 500 37 30 22 28 35 10 52 

5 500 40 17 37 10 5 0 0 

6 500 49 17 25 3 7 7 3 

7 500 30 12 25 10 12 5 13 

Aminocyclopyrachlor 66 99 88 99 53 57 20 7 

Dicamba 280 99 99 99 47 53 38 57 

Quinclorac 840 80 73 99 99 93 33 63 

Untreated Check ---- 0 0 0 0 0 0 0 

a  
All treatments were dissolved in acetone and water and were applied with 1% v/v crop oil concentrate. 

b   
Redroot pigweed (Amaranthus retroflexus), Velvetleaf (Abutilon theophrasti), Field bindweed (Convolvulus arvensis), Barnyardgarss (Echinochloa 

crus-galli), Large crabgrass (Digitaria sanguinalis), Yellow nutsedge (Cyperus esculentus), sweet corn (Zea mays L. var. saccharata) 
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