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Cyclohexylether d-Amino Acids: New Leads
for Selectivity Filters in Ion Channels**
Hans-Dieter Arndt, Andrea Knoll, and Ulrich Koert*

Biological ion channels are key molecules for cellular
regulation and communication. They couple (bio)molecular
events to electric signals.[1] This property of natural pore-
forming substances has been utilized in engineering biosen-
sors.[2] In order to use synthetic channel structures[3] as sensors
or implants in biological systems, they have to meet require-
ments in two areas: ion selectivity[3e, 4] and gating.[5] We report
here on novel oligomers made from d-amino acids that led to
H�- and NH4

�-selective ion channels.
On substituting the central amide bond of a dipeptide, a d-

amino acid is obtained (Scheme 1).[6] Besides offering struc-
tural diversity at four positions, a d-amino acid allows
incorporation of a heteroatom in the continuous backbone.[7]

If one chooses an oxygen and constricts the degrees of
conformational freedom with a cyclohexane ring, the ether
amino acid (AA) 1 results.

Scheme 1. From d,l-dipeptides to the stereoequivalent d-amino acid 1, a
new building block for cation channels.

The selectivity filters of biological K� and Ca2� channels are
lined with backbone atoms.[8a,b] In the ion channel active, but
weakly selective, b6.3-helical dimer of the d,l-peptide grami-
cidin A (gA) only backbone amides are exposed towards the

interior.[8c] The incorporation of d-AA 1 with its ether oxygens
should offer additional binding sites for a cation in the
lumen.[9] Our target compounds 2 ± 4 were chosen by combin-
ing di-, tetra-, and hexameric d-AA segments with function-
ally important sequences from gA to yield structures with the
approximate total length of the gA dimer.[10, 11]

The synthesis of the compounds incorporating d-AA 1
starts from cyclohexene epoxide 5, which was transformed to
the azido alcohol according to the method of Jacobsen and co-
workers[12] (94 % yield, 93 % ee under optimized conditions,
Scheme 2). Alkylation with tert-butylbromoacetate using
phase-transfer catalysis[13] gave masked d-AA monomer 6
(95 %; R� tBu),[14] which was homodimerized to 9 via a mixed
anhydride (R�COCMe3; formed from 7 (step e in
Scheme 2)). Dimer 9 could be obtained isomerically pure by
crystallization (n-hexane/Et2O (7:1), Figure 2). After elonga-
tion with a succinate building block, the resulting diester 10
was connected at both termini with the a-peptide 11[11] to yield
the target compound 2. Compounds 3 and 4 were similarly
synthesized (see Supporting Information).[14]

The compounds 2 ± 4 were then examined for their ion
channel forming activity.[15, 16] The compounds with tetra- and
hexameric d-peptide units, 3 and 4, did not form detectable
cation channels. But they induced short-lived proton channels
when applied in concentrations above 100 nm (Figure 1 a, b).
Probably, a bottleneck conformation permits only protons to
pass.[17]

[9] a) R. Irie, Y. Ito, T. Katsuki, Synlett 1991, 265; b) N. S. Finney, P. J.
Pospisil, S. Chang, M. Palucki, R. G. Konsler, K. B. Hansen, E. N.
Jacobsen, Angew. Chem. 1997, 109, 1798; Angew. Chem. Int. Ed. Engl.
1997, 36, 1720.

[10] It should be pointed out that the role of spin contamination in Kohn ±
Sham theory is not clear. For a more extensive discussion see: W.
Koch, M. C. Holthausen, A Chemist�s Guide to Density Functional
Theory, Wiley-VCH, Weinheim, 2000.

[11] These would also be similar to the ªbentº conformation proposed for
chromium ± salen complexes: K. M. Ryan, C. Bousquet, D. G. Gil-
heany, Tetrahedron Lett. 1999, 40, 3613.

[12] Further evidence for the electronic nature of this effect comes from
preliminary B3LYP/3-21G* calculations of the catalyst bearing an
axial OClÿ ligand. As in the case of trimethylamine N-oxide, the
ligation of hypochlorite leads to highly nonplanar conformations.
Similarly, inspection of the calculated structure of a Clÿ-ligated Mn ±
salen model catalyst depicted in ref. [7b] reveals a strong tendency for
a nonplanar conformation.

[13] K. Miura, T. Katsuki, Synlett 1999, 783.
[14] For examples of such calculations, see: a) J. N. Harvey, M. Aschi, H.

Schwarz, W. Koch, Theor. Chem. Acc. 1998, 99, 95; b) S. Mitchell, M.
Blitz, P. Siegbahn, M. Svensson, J. Chem. Phys. 1994, 100, 423;
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2000, 33, 139.
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Scheme 2. Synthesis of 2 : a) 1. TMSN3 (1.1 equiv), 2 mol % [Cr(N3)(sa-
len)],[12] 20 mol % iPrOH, Et2O (2m), 0 8C, 36 h, 94 %; 2. 0.1% TFA in
MeOH, 20 8C, 1 h, >99%; b) tBuOCOCH2Br, nBu4Br, 12m NaOH/
toluene, 20 8C, 24 h, 95%; c) TFA/CH2Cl2 (2:1), 20 8C, 1 h, >99%;
d) MeOH, cat. Pd/C (5%), H2 (1 bar), 2 h, >99 %; e) 7 (R�H) in DMF,
NEt3, PivCl, 0 8C, 30 min, then 8, NEt3, 0 8C!20 8C, 1 h, 77%; f) pNBnO-
Succ, EDC, HOBt, EtNiPr2, CH2Cl2/DMF (10:1), 0 8C!20 8C, 12 h, 90%;
g) 11, HATU, HOAt, EtNiPr2, CH2Cl2/DMF (3:1), 0 8C!20 8C, 6 h;
h) LiOH, THF/H2O 3:1, 0 8C, 1 h. DMF�N,N-dimethylformamide,
EDC� 3-(3-dimethyl-aminopropyl)-1-ethylcarbodiimide hydrochloride,
HATU�O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexa-
fluorophosphate, HOAt� 7-aza-1-hydroxy-1H-benzotriazole, HOBt� 1-
hydroxy-1H-benzotriazole monohydrate, H2Salen� (R,R)-N,N'-bis(3,5-di-
tert-butylsalicylidene)cyclohexane-1,2-diamine, Piv� pivaloyl (COCMe3),
pNBn� 4-nitrobenzyl, Succ� succinyl (COCH2CH2CO2H), TFA� tri-
fluoroacetic acid.

In contrast, compound 2 formed well-defined channels with
a remarkable selectivity among monovalent cations: Cs� and
NH4

�were conducted well, but K� single-channel events were
at the detection limit (Figure 1 d ± f). For Na� and Li�, single-
channel events could no longer be resolved any more. The
analysis of the permeability ratios revealed a pronounced
Eisenman-I selectivity:[1b] H��NH4

��Cs�>Rb�>K�>
Na��Li� (Table 1). The selectivity (Prel , Lrel) of 2 is three
to four times higher than that of gA. The absolute conduc-
tance is decreased by the incorporated d-AAs, which indicates
a narrowed pore or a reinforced binding.[18] The mean dwell
times of the cation channels of 2 are between 200 and 350 ms,

Figure 1. Representative current traces of compounds 2 ± 4 in planar soya-
bean lecithin lipid bilayers: a) 4, conductivity L� 355/198 pS, dwell time
t� 3.7 ms; b) 3, L� 255/107 ps, t� 8 ms (c(3, 4)� 500 nm, U��100 mV;
in 1m HCl); c) 2, H� ; d) 2, K� ; e) 2, Cs� ; f) 2, NH4

� (c(2)� 10 pm, U�
�200 mV; in 1m MCl, M��H�, K�, Cs�, NH4

�); g) amplitude histogram
for NH4

�-channels of compound 2 at 120 mV (A� amplitude, N� number
of results). Experimental details can be found in the Supporting Informa-
tion.

but the proton-channel dwell time is only 8 ms (Fig-
ure 1 c).[5b, 19]

With the exception of Cs�, two levels of conductance were
found (Table 1, Figure 1 g). Asymmetric compounds such as
2 ± 4 may adopt at least two orientations within the mem-
brane, with respect to the membrane normal. A maximum of
two detectable conductance levels supports the assumptions
that a) unimolecular channels are present and b) the d-AAs
do indeed influence the ions pathway.

These results introduce the new d-AA 1 as a novel lead
structure in the synthesis of H�- and NH4

�-selective ion

Table 1. Permeability ratios P and conductivity figures L of 2 and gA.

M� Prel(gA)[a] Prel(2)[a] L(gA)[b] L1(2)[b] L2(2)[b] Lrel(gA)[c] Lrel(2)[c]

Li� 0.051� 0.001 0.035� 0.002 2.93� 0.07 ± ± 0.07 ±
Na� 0.105� 0.003 0.036� 0.002 14.80� 0.08 ± ± 0.34 ±
K� 0.248� 0.004 0.078� 0.008 26.0� 0.2 1.06� 0.11 0.66� 0.06 0.60 0.14 (0.12)
Rb� 0.401� 0.012 0.122� 0.004 43.1� 0.3 2.38� 0.13 1.85� 0.11 1.00 0.32 (0.34)
Cs� 0.507� 0.009 0.273� 0.025 43.6� 0.2 6.48� 0.11 ± 1.01 0.87
NH4

� 1 1 43.3� 0.2 7.43� 0.07 5.49� 0.09 1 1
H� 3.99� 0.19 4.77� 0.18 561� 17 90� 15 67.2� 0.8 13.0 12.1 (12.2)

[a] Determined from the reversal potentials of 1m MCl solutions relative to a 1m NH4Cl solution.[1b] This is the mean of all conductivity levels because sum
currents were measured (see Supporting Information). [b] Conductivity [pS], determined from the slope of the current-voltage curve at U� 0 mV. For Cs�

only one level was found. [c] Conductivity relative to NH4
� conductivity. The second conductivity level is given in parentheses.
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channels. Synthetic compound 2 shows a more than threefold
increase in NH4

�/K� selectivity compared to gA. The X-ray
crystal structure analysis of dimer 9 (Figure 2) gives a hint of
the role of d-AA 1 in the channel:[20] The d-peptide 9 adopts

Figure 2. X-ray crystal structure analysis of d-dipeptide 9 (ellipsoids with
50% probability). Selected distances [pm]: N4-O1 256.3(6), N4-O4
315.8(7). Please note the right-handed helical conformation (N1-O1-N4-
O3-O5).

the conformation of a right-handed helix in the solid state.
Thus, it should be ideally suited to propagate the right-handed
b6.3-helices of the d,l-peptide segments in their ion-conduct-
ing conformation.[8c, 11] The central bifurcated hydrogen bond
has to open to allow ions to pass vertically in the plane of
display. Such ªgatingº could account for the dwell times,
which are short compared with known examples.[9b, 11, 19]
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