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Abstract: An anionic polycondensation has been used as the key
step in a highly convergent strategy for the preparation of hypoxy-
xylerone derivatives.
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Hypoxyxylerone (1), a dibenzoxanthenone isolated from
the fungus Hypoxylon fragiforme in 1991 by Edwards and
coworkers, has been shown to inhibit in vitro topo-
isomerase I.1

We have been interested in the synthesis of not only this
scarce metabolite, but also diverse analogs that might
provide insight into structure–activity relationships. We
have already disclosed a first-generation approach to the
structurally unique natural product, which culminated in
the preparation of its penta(O-methyl) derivative 5
(Scheme 1).2 This route, based on a novel anionic homo-
Fries rearrangement of ester 2 to secure the key xanthone
intermediate 4, via 3, was convergent, but the preparation
of each of the naphthalene moieties in 2 was long, which
made it ill-suited for the synthesis of analogs.

The anionic polycondensation reported over 20 years ago
by Kjaer and coworkers,3 although demonstrated only for
acetophenones, appeared to offer an attractive alternative.
This under-used methodology, if it could be successfully
extrapolated to acetonaphthones, seemed capable of
providing a short, highly convergent, and quite flexible
approach to hypoxyxylerone and diverse derivatives.

The key step in the envisaged approach, outlined in
Scheme 2, would be the formation of dibenzoxanthone I
through anionic polycondensation of acetonaphthone IV
with homophthalate III. Each of these components can be
readily prepared with considerable structural and func-
tional group variation.
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Scheme 2

For the purpose of rapidly ascertaining whether the
acetonaphthone condensation would in fact be feasible
and, if so, whether it would produce primarily the desired
L-shaped product I through selective cyclization at
carbonyl a in the likely intermediate II (as opposed to the
U-shaped product through cyclization at b), the reaction
of commercially available 1¢-hydroxy-2¢-acetonaphthone
with dimethyl homophthalate was first examined
(Scheme 3).

Scheme 3

Under the conditions described by Kjaer and coworkers,3

a unique xanthone 8 was formed in 46% yield, which was
shown to have the desired L-shape geometry, as from
acetophenones, by X-ray analysis.4 Extensive optimiza-
tion of the reactions conditions (separate dianion forma-
tion over 1 h, 1.7 equiv of diester, 22 h reaction time) led
to the formation of the pentacyclic xanthone in a much
improved 69% yield.

This encouraging result prompted efforts to prepare more
complex derivatives of hypoxyxylerone through the use
of this approach. For comparison with the previous
approach, the penta(O-methyl) derivative 4 was first
targeted. The requisite, known3 homophthalate diester 11
could be easily prepared on a large scale as shown in
Scheme 4. Methyl acetoacetate was autocondensed5 to
give methyl orsellinate which was converted to diether
10a with dimethyl sulfate and potassium carbonate in re-
fluxing acetone (56%, 2 steps). Carbomethoxylation at the
benzylic position of 10a was best accomplished indirectly
by carboxylation of the corresponding acid 10b to yield
the diacid derivative,6 followed by methylation to afford
diester 11 (65%, 2 steps).

The 4-step preparation of the second moiety, acetonaph-
thone 15b, was based on chemistry that had previously
been applied for the synthesis of molecules similar to
naphthoate 15a, but required considerable modification to
obtain serviceable results (Scheme 5).7 The anion formed
from the methyl orsellinate derivative 10a was treated
with Weinreb amide 128 to provide in 68% yield a-meth-
oxy ketone 133,9,10 which was smoothly converted into
isocoumarin 1411 with sodium hydride in THF.9

Scheme 5 

This isocoumarin was next transformed in 75% yield into
methyl naphthoate 15a by using a procedure similar to
that developed by Roush and Murphy for their synthesis
of olivine.12 Treatment of this ester with methyllithium
and trimethylsilyl chloride13 then provided acetonaph-
thone 15b (59%; 30% overall from 10a).
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The polycondensation of the 2 fragments, diester 11 and
ketone 15b, was effected under the optimized model-sys-
tem conditions to give a mixture of naphthonaphthone 16
and the desired xanthone 4 (Scheme 6); the mixture, by
heating in water–toluene at 180 °C in a closed vessel,
could be transformed completely into xanthone 4 (37%
overall yield).14,15

Although the present convergent route to 4 is only slightly
higher yielding overall than the previous (11% vs 10%), it
is considerably more reproducible and rapid (7 steps vs 13
steps, longest linear sequence) and, furthermore, lends it-
self more readily to analog preparation.

To demonstrate the flexibility inherent in this approach, a
family of hypoxyxylerone analogs with OMe’s in lieu of
OH’s and a Me in place of the CH2OH group has been pre-
pared. The polycondensations were carried out with the
homophthalates 6 and 11 and the acetonaphthones 17a,b
(Scheme 7).16 The resulting pentacyclic xanthones (18a–
d), obtained in quite acceptable yields in view of the con-
ciseness of the approach, were all assigned the L-shape ge-
ometry based on the structures of derivatives 4 and 8 and
X-ray analysis of 18d.17

The o-quinone methide substructure found in hypoxyxy-
lerone (1) could be generated in 18a–d through lithium
aluminum hydride reduction, followed by in situ hydro-
lytic rearrangement of the intermediate xanthols, which
gave derivatives 19a–d.18,19 The hypoxyxylerone ana-
logues 19b,d were found to inhibit topoisomerase I in
vitro, albeit less so than the natural product.

In summary, the anionic polycondensation developed by
Kjaer and coworkers for acetophenones has been success-
fully extended to acetonaphthones for a new, flexible
approach to hypoxyxylerone derivatives. Current efforts
are focused on the use of this convergent strategy to ac-
cess other analogs as well as the natural product itself.
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