A CONVENIENT SYNTHETIC ROUTE TO THE BACTERIOCHLORIN CHROMOPHORE

Abstract: The reactions of an A,C-divinylporphyrin with activated dienophiles yield stable bis Diels-Alder adducts absorbing light at wavelengths above 735 nm. This provides a convenient general route to bacteriochlorin-like chromophores.

Photodynamic therapy (PDT)¹ is a novel technique for treating malignant tumors whereby a preferentially localized photosensitizer is activated using light of appropriate wavelength leading to singlet oxygen mediated destruction of the tissue. The sensitizers that have been studied extensively are hematoporphyrin derivative (HpD)² and an enriched fraction 3 of it, commercially referred to as Photofrin R . Photofrin R is a complex mixture of porphyrin dimers and oligomers having a weak absorption maximum around 630 nm, at which wavelength the tissue penetration of activating light is low. The search for a second-generation photosensitizer which absorbs strongly at a longer wavelength, (thereby conferring a therapeutic advantage of greater tissue penetration) has resulted in the development of several new compounds4,5 having absorption maxima in the 650-750 nm range. Of particular importance is a "chlorin-type" compound benzoporphyrin derivative (BPD) synthesized in our laboratory by the Diels-Alder reaction of dimethyl acetylenedicarboxylate on protoporphyrin IX dimethyl ester.⁶ BPD, with a strong absorption peak at 690 nm has been shown in animal studies 7 to be more useful in PDT than Photofrin^R. With the advent of low-cost reliable diode lasers operating in the 790-850 nm range, the emphasis has been for the development of compounds absorbing in the far visible red and near infra red region. Continuing our work on Diels-Alder reactions of vinylporphyrins, we have developed and describe here, the synthesis of a stable bacteriochlorin system.

The synthetic strategy adopted here was based on the assumption that two successive Diels-Alder cycloadditions will occur on an A,C-divinylporphyrin. Although vinylporphyrins have been synthesized in high yield⁸ employing a stepwise approach via 1-bromo-19-methylbiladienes-ac,⁹ we chose to simplify the synthetic route by introducing a two-fold axis of symmetry perpendicular to the porphyrin plane. This allowed the use of a convenient one-pot synthesis¹⁰ for the construction of the porphyrin macrocycle.

2875

Scheme 1 outlines two synthetic approaches to the A,C-divinylporphyrin 14, using the readily available pyrroles, benzyl 4-methoxycarbonylmethyl-3,5-dimethylpyrrole-2carboxylate $(1)^{11}$ and benzyl 4-ethyl-3,5-dimethylpyrrole-2-carboxylate $(6)^{.12}$ In the first approach, pyrrole 6 was initially transformed to the synthetically useful benzyl 4-ethyl-5-formyl-3-methylpyrrole-2-carboxylate (3) using 2 equivalents of sulfuryl chloride in dichloromethane followed by hydrolysis.¹³ The pyrroles 1 and 3 were catalytically debenzylated and the resulting carboxylic acids (2 and 4) dissolved in refluxing acetonitrile-methanol (1:1) and treated with HBr in acetic acid. The orangebrown solution was evaporated *in vacuo*, and the crude dipyrromethene 5 self-condensed in refluxing anhydrous formic acid using 2.2 equivalents of bromine. Careful evaporation

of the solvent followed by the usual work-up afforded the bis(methoxycarbonymethyl)porphyrin 11 in 25-30% overall yield (from 1 and 3). An alternative route starting from the monopyrroles 6 and 8 (the latter obtained from 1) via the dipyrromethene 10, produced the porphyrin 11 in similar overall yield. This was transformed to the A.Cdivinylporphyrin 14 in high yield via the bis(2-hydroxyethyl)porp-

hyrin 12 and bis(2-chloroethyl)porphyrin 13 as previously reported.⁸

The Diels-Alder reactions of the divinylporphyrin 14 were carried out in degassed toluene solutions at 110° C using a 50 fold molar excess of the appropriate dienophile. The formation of the monoadduct (chlorin) and the bis adduct (bacteriochlorin) could be followed by uv-visible spectroscopy due to characteristic absorption maxima associated with each chromophore. The optimum reaction time was found to be 72 h, beyond which, the transformation of the chlorin to the bacteriochlorin was accompanied by significant decomposition of the product. Reaction of 14 with the olefinic dienophile N-phenylmaleimide under the conditions specified above, gave the bis adducts 16^{14} (Scheme 2) as the major product in 45% yield while the monoadduct 15 was isolated in <8% yield. The electronic spectrum of 16 exhibited a double Soret ($\lambda_{max} = 388$, 410 nm) and a strong absorption at 738 nm, a characteristic of the bacteriochlorin chromophore. Reaction of the divinyl-porphyrin 14 with the acetylenic dienophile, diethyl acetylenedicarboxylate, gave the bis

Scheme 2.

adduct 17^{15} in 52% yield also exhibiting a double Soret and a strong absorption at 738 nm. Treatment of 17 with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) for 3 h at room temperature resulted in a bathochromic shift of the long wavelength absorption up to 786 nm. The ¹H nmr spectrum of the product 18^{16} isolated in near quantitative yield, confirmed that the double bond in each six-membered ring had isomerized, thus extending the conjugation in the molecule. Complete structural and stereochemical features were established using n.O.e. difference experiments.

The method described above provide convenient access to stable bacteriochlorin derivatives which have previously been observed¹⁷ as unstable non-isolable reaction products.

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the U.S. National Institutes of Health (DK17989) and the British Columbia Health Development Fund.

References and notes

- T.J. Dougherty, In Medical Radiology Innovations in Radiation Oncology, H.R. Withers, and L.J. Peters, Eds.; Springer-Verlag, 1988, 175.
- 2. R.L. Lipson,; E.J. Blades; A.M. Olsen, J. Natl. Cancer Inst., 1961, 26, 1.
- T.J. Dougherty; W.R. Potter; K.R. Weishaupt, In Tumor Phototherapy, A. Andreoni, and R. Cubeddu, Eds.; Plenum, New York, 1984, 23.

- D. Dolphin; E. Sternberg, In Infrared Absorbing Dyes, Matsuoka, M. Ed., Plenum Publishing Corporation, New York, 1990, 193.
- 5. M. Kreimer-Birnbaum, Seminars in Hematology 1989, 26, 157.
- 6. Pangka, V.S.; Morgan, A.R.; Dolphin, D. J. Org. Chem. 1986, 51, 1094.
- A.M. Richter; B. Kelly; J. Chow; D.J. Liu; G.H.N. Towers; D. Dolphin; J.G. Levy; J. Natl. Cancer Inst. 1987, 79, 1324.
- 8. P. Yon-Hin; T.P. Wijesekera; D. Dolphin, Can. J. Chem. 1990, 68, 1867.
- 9. T.P. Wijesekera; D. Dolphin, Synlett. 1990, 235.
- 10. C.K. Chang, J. Am. Chem. Soc. 1977, 99, 2819.
- 11. R.P. Carr; A.H. Jackson; G.W. Kenner; G.S. Sach, J. Chem. Soc. (C) 1971, 487.
- 12. A.W. Johnson; E. Markham; R. Price; K.B. Shaw, J. Chem. Soc. 1958, 4254.
- 13. J.B. Paine III; D. Dolphin, J. Org. Chem. 1988, 53, 2787.
- 14. Analytical data for **16**: mp 185-186°C Vis (CH_2Cl_2) : λ_{max} (log ϵ) 388 (4.99), 410 (5.07), 490 (4.19), 526 (4.05), 702 (3.96), and 738 (4.85) nm; High resolution mass: M⁺, 820.3729, C₅₂H₄₆N₆O₄ requires 820.3724); ¹H-NMR (CDCl₃) δ -2.28 (s, 2H, 2 x NH), 1.70 (t, 6H, 2 x -CH₂CH₃), 2.00, 2.05 (2s, 6H, angular-CH₃), 3.35 (s, 6H, ring-CH₃), 3.40 (m, 4H, -CH₂- at C-2³ and C-12³); 3.80 (m, 2H, H at C-2² and C-12²); 3.85 (m, 4H, 2 x CH₂CH₃); 4.54 (d, 2H, H at C-2¹ and C-12¹); 6.60-7.00 (m, 10H, Ar-H); 7.22 (t, 2H, H at C-2⁴ and C-12⁴); 8.90, 9.05 (2s, 4H, meso-H).
- 15. Analytical data for 17: mp 175-177°C Vis (CH_2Cl_2) : λ_{max} (log ϵ) 384 (5.00), 406 (5.08), 484 (4.21), 538 (4.06), 698 (3.94), and 738 (4.86) nm; High resolution mass: M⁺, 814.3957, $C_{48}H_{54}N_4O_8$ requires 814.3927; ¹H-NMR (CDCl₃) δ -2.51 (s, 2H, 2 x NH), 1.08 (t, 6H, -CO₂CH₂CH₃ at C-2¹ and C-12¹); 1.40 (t, 6H, -CO₂CH₂CH₃ at C-2² and C-12²); 2.00, 2.02 (2s, 6H, angular-CH₃ at C-2¹ and C-12¹); 3.40 (s, 6H, 2 x ring-CH₃); 3.62 (m, 2H, H at C-2³ and C-12³); 3.85 (m, 4H, 2 x CH₂CH₃), 3.95 (m, 2H, H at C-2³ and C-12³); 4.30-4.40 (m, 4H, 2 x -CO₂CH₂CH₃- at C-2² and C-12²); 4.42-4.62 (m, 4H, 2 x -CO₂CH₂CH₃ at C-2¹ and C-12¹); 7.23-7.28 (m, 2H, H at C-2⁴ and C-12⁴); 8.95 (s, 2H, H at C-5 and C-15); 9.18 (s, 2H, H at C-10 and C-20).
 - 16. Analytical data for 18: mp 279-280°C. Vis (CH_2Cl_2) : λ_{max} (log ϵ) 448 (4.89), 468 (5.05), 558 (4.43), 622 (4.58), 702 (4.26), 742 (4.22), and 786 (4.86) nm; High resolution mass: M⁺, 814.3957, C₄₈H₅₄N₄O₈ requires 814.3927; ¹H-NMR (CDCl₃) δ -1.87 (br s, 2H, 2 x NH), 0.33, 0.38 (t, 6H, -CO₂CH₂CH₃ at C-2¹ and C-12¹); 1.46 (t, 6H, -CO₂CH₂CH₃ at C-2² and C-12²); 1.74, 1.78 (s, 6H, angular-CH₃ at C-2¹ and C-12¹); 1.75 (t, 6H, 2 x -CH₂CH₃); 3.30-3.60 (m, 4H, -CO₂CH₂CH₃ at C-2¹ and C-12¹); 3.35 (s, 6H, 2 x ring-CH₃); 3.75-3.90 (m, 4H, 2 x CH₂CH₃); 4.35-4.50 (m, 4H, -CO₂CH₂CH₃ at C-2² and C-12²); 4.90 (s, 2H, H at C-2¹ and C-12¹); 7.28, 7.78 (2d, 4H, J = 8 Hz, H at C-2³, C-2⁴, C-12³ and C-12⁴); 8.76 (s, 2H, H at C-5 and C-15); 9.13 (s, 2H, H at C-10 and C-20).
 - Cavaleiro, J.A.S.; Jackson, A.H.; Neves, M.G.P.M.S.; Rao, K.R.N. J. Chem. Soc. Chem. Commun., 1985, 776.

(Received in USA 9 November 1991)