Synthesis of the C₁–C₂₁ Southern Hemisphere of the Originally Proposed Structure of Spirastrellolide A

Ian Paterson,* Edward A. Anderson, Stephen M. Dalby

University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK Fax +44(1223)336362; E-mail: ip100@cam.ac.uk *Received 8 August 2005*

Dedicated to Professor Steven Ley on the occasion of his 60th birthday

Abstract: A stereocontrolled synthesis of the C_1-C_{21} [6,6]-spiroacetal-containing domain of the originally assigned structure of spirastrellolide A is reported, exploiting asymmetric boron aldol methodology and an alkyne addition to a C_{17} aldehyde. Comparison of the ¹H NMR data obtained for this synthetic fragment with that for the corresponding region of spirastrellolide suggested some stereochemical reassignment was required.

Key words: total synthesis, spiro compounds, macrolides, aldol reactions, asymmetric synthesis

Spirastrellolide A, a novel antimitotic macrolide isolated by Andersen and co-workers from the Caribbean sponge *Spirastrella coccinea* in 2003,¹ is a potent ($IC_{50} = 1 \text{ nM}$) and selective inhibitor of protein phosphatase 2A (PP2A).² As such, it appears to exhibit a similar mode of action to other Ser/Thr phosphatase inhibitors, including fostriecin, okadaic acid and the calyculins, which induce premature cell mitosis.³ Synthetic interest in spirastrellolide A derives not only from its unique molecular architecture,⁴ but also from its potential development as an antitumour therapeutic agent. Given the central regulatory role of PP2A in the cell, it may also have some value as a lead in the treatment of neurological and metabolic disorders.

At the outset of our synthetic studies, extensive NMR spectroscopic analysis performed by the Andersen group¹ had led to a partial structural assignment of spirastrellolide as a 38-membered macrolide, as indicated in **1** but without assigning any stereochemistry in the C_1 – C_{11} region⁵ (Scheme 1). The spirastrellolide macrolactone itself was characterized as containing a 2,6-disubstituted tetrahydropyran (A ring) and two [6,6]-spiroacetals (BC and DE rings). Significantly, both spiroacetal motifs appear to benefit from stabilisation by a double anomeric ef-

1: Spirastrellolide A (original assignment)

Scheme 1 Retrosynthetic analysis of the $C_1 - C_{21}$ southern hemisphere of the originally proposed structure 1 for spirastrellolide A.^{1,5}

SYNTHESIS 2005, No. 19, pp 3225–3228 Advanced online publication: 27.10.2005 DOI: 10.1055/s-2005-918449; Art ID: C05505SS © Georg Thieme Verlag Stuttgart · New York fect, with all substituents equatorially disposed. Altogether, there are some 19 stereocentres embedded within this elaborate macrolactone core, along with two hydroxyl-bearing stereocentres in the (Z,E)-1,4-diene side chain appended to C₃₇.

At this early stage in the structural elucidation of spirastrellolide, only a partial stereochemical assignment was available,⁵ where the relationship between three stereoclusters (C_1-C_7 , C_9-C_{24} and $C_{27}-C_{38}$) was unknown. In view of this ambiguity, our initial synthetic efforts towards spirastrellolide focussed on constructing the C_1-C_{21} southern hemisphere segment **2**, containing both the [6,6]spiroacetal and a candidate *trans*-disubstituted tetrahydropyran, as reported herein.

Our retrosynthesis of the C_1-C_{21} segment 2 of spirastrellolide, as outlined in Scheme 1, is based on the planned coupling of three key subunits 3, 4 and 5. We envisaged that a suitable open-chain precursor 6 to the required [6,6]-spiroacetal 2 might be derived from the coupling of

Scheme 2 Asymmetric synthesis of the three key subunits 3, 4 and 5.

Synthesis 2005, No. 19, 3225-3228 © Thieme Stuttgart · New York

alkyne 7 with aldehyde 3. Recognition of a 1,5-*anti* relationship between C_9 and C_{13} guided our choice of a strategic C_9-C_{10} bond disconnection to reveal the methyl ketone 4, containing a masked alkyne functionality, and the A-ring aldehyde 5. Following precedent set by ourselves⁶ and the Evans group,⁷ a boron-mediated aldol coupling⁸ between 4 and 5 was anticipated to install the desired C_9 configuration relative to the inducing C_{13} stereocentre. A subsequent hydroxyl-directed 1,3-*anti* reduction should then generate the required C_{11} stereocentre.

As shown in Scheme 2, the synthesis of the C_{10} – C_{16} subunit 4 commenced from our lactate-derived ketone 8⁹ and the aldehyde 9 (prepared from glyoxal¹⁰). An *anti* aldol addition of the kinetically generated (*E*)-boron enolate (*c*-Hex₂BCl, Me₂NEt) with a solution of freshly prepared aldehyde 9 gave the expected β -hydroxy ketone 10,^{11,12} as essentially a single isomer (97:3 dr, 91%). Formation of the PMB ether of aldol adduct 10 [PMBTCA, cat. Sc(OTf)₃] was followed by cleavage of the auxiliary under standard conditions^{9b} to deliver aldehyde 11 in 72% yield. Corey–Fuchs¹³ homologation of 11 to the vinyl dibromide then proceeded smoothly (98%) to install the latent terminal alkyne moiety. Finally, a Wacker oxidation¹⁴ provided the required methyl ketone 4 (41% from 8).

Efficient access to the C_1 - C_9 subunit **5**, containing the *trans*-disubstituted tetrahydropyran, was achieved in four steps from the known¹⁵ dihydropyranone **12** (Scheme 2). Luche reduction of **12**, followed by acetylation, gave the Ferrier rearrangement substrate **13** cleanly (94%). Following previous work within our group,¹⁶ treatment of ac-

Scheme 3 Aldol coupling of 4 and 5 followed by elaboration to alkyne 7.

etate **13** with (*i*-PrO)₂TiCl₂ and TBSOCH=CH₂ gave the 2,6-*trans*-dihydropyran **14** as a single isomer, which was followed by hydrogenation of the alkene to provide aldehyde **5**. The remaining C_{17} - C_{21} subunit **3** was accessed (73%, 3 steps) from the PMB ether **15** of (*S*)-glycidol (Scheme 2). This involved copper-promoted epoxide opening with allylmagnesium bromide followed by methyl ether formation and oxidative cleavage of the alkene using $OsO_4/NaIO_4$ to deliver the aldehyde **3**.

Scheme 4 Coupling of 7 and 3 followed by elaboration into tricyclic C_1-C_{21} subunit 2.

With the various subunits in hand, we were now ready to tackle the fragment coupling steps. We began by exploring the aldol coupling of methyl ketone **4** with aldehyde **5**, involving the installation of the C₉ stereocentre (Scheme 3). Initially, treatment of aldehyde **5** with the dicyclohexylboron enolate of **4** (*c*-Hex₂BCl, Et₃N) led to moderate selectivity (3:1 dr) in favour of the expected⁶ 1,5-*anti* adduct **16**. However, this substrate induction could be significantly enhanced through reagent control, employing the matched diisopinocampheylboron enolate of **4** [(-)-Ipc₂BCl, Et₃N], to deliver adduct **16** as essentially a single isomer (>97:3 dr) in 79% yield. The stereochemical information at C₉ could now be relayed to C₁₁ via an Evans–Saksena reduction.¹⁷ Thus, treatment of β-hydroxy ketone **16** with Me₄NBH(OAc)₃ in MeCN–

AcOH (3:1) gave the 1,3-*anti* diol **17** (95:5 dr, 92%). Completion of the C₁–C₁₆ alkyne subunit **7** proceeded smoothly in 90% yield from diol **17** via *bis*-TBS ether formation (TBSOTf) and treatment with *n*-BuLi to reveal the terminal alkyne.

At this stage, the fully elaborated open-chain precursor 6for spiroacetal formation could be generated (Scheme 4). Fragment union was achieved via lithiation of alkyne 7 using *n*-BuLi, followed by addition of aldehyde **3**, to give adduct 18, as an epimeric mixture at C_{17} . Lindlar hydrogenation of 18 followed by Dess-Martin oxidation gave the corresponding (Z)-enone 6 cleanly (77%, 3 steps). Gratifyingly, treatment of **6** with DDQ in buffered CH_2Cl_2 effected clean deprotection of the PMB ethers at C_{13} and C_{21} and led initially to the in situ formation of two spiroacetals that equilibrated to a single isomer 2, which was isolated in 61% yield. The successful formation of the desired spiroacetal stereochemistry was readily confirmed by ¹H and ¹³C NMR analysis.¹¹ A strong NOE enhancement between H_{13} and H_{21ax} , also observed in the natural product, confirmed that the C_{17} acetal centre of 2 possessed the desired configuration. As shown in Figure 1, a close correlation between the ¹H NMR data for the synthetic subunit and spirastrellolide was observed within the C_{13} - C_{20} spiroacetal region. In contrast, comparison of the C_3-C_{12} region revealed substantial differences, which suggested to us that the preliminary structural assignment of spirastrellolide as 1^5 was probably incorrect.

Figure 1 ¹H NMR chemical shift comparison for the C_1 – C_{21} subunit 2 with spirastrellolide methyl ester **22** (Figure 2).

Around this time, the Andersen group revised the structure of spirastrellolide to **19** (Figure 2).² This new structure features a *cis*-disubstituted tetrahydropyran (A ring) and a [6,6]-spiroacetal (BC rings), together with additional stereochemical assignments (cf. circled carbon atoms), within the southern hemisphere. Furthermore, the northern hemisphere region was subject to more radical structural revision, now featuring a [5,6,6]-bis-spiroacetal (DEF rings) appended with a chlorine atom. In support of this revised structure 19 for spirastrellolide, our subsequent studies have led to the synthesis of the C_1 – C_{25} subunit 20, incorporating the appropriate stereochemical changes at C_7 , C_9 and C_{11} , along with the C_{26} - C_{40} subunit 21.18 Both fragments now show excellent agreement with the corresponding NMR data obtained for the natural product.19

In summary, we have completed a highly convergent synthesis of the C_1 - C_{21} spiroacetal-containing fragment 2 based on the original structural assignment of spiras-

Figure 2 Revised structural assignment of spirastrellolide² and synthetic fragments prepared.¹⁸

trellolide A (16% yield over the longest linear sequence of 14 steps). Key features include the use of asymmetric boron aldol reactions to configure several stereocentres, along with the mild and selective conditions employed for spiroacetalisation. In more recent efforts directed towards the total synthesis of spirastrellolide A (**19**), this preliminary work has already helped guide our strategy for the construction of the stereochemically revised C_1-C_{25} subunit **20**.

Acknowledgment

We thank the EPSRC (EP/C541677/1), Homerton College, Cambridge (Research Fellowship to E.A.A.) and Merck for support, and Professor Raymond Andersen (University of British Columbia) for helpful discussions.

References

- Williams, D. E.; Roberge, M.; Van Soest, R.; Andersen, R. J. J. Am. Chem. Soc. 2003, 125, 5296.
- (2) Williams, D. E.; Lapawa, M.; Feng, X.; Tarling, T.; Roberge, M.; Andersen, R. J. *Org. Lett.* **2004**, *6*, 2607.
- (3) (a) Le, L. H.; Erlichman, C.; Pillon, L.; Thiessen, J. J.; Day, A.; Wainman, N.; Eisenhauer, E. A.; Moore, M. J. *Invest. New Drugs* 2004, 22, 159. (b) Honkanen, R. E.; Golden, T. *Curr. Med. Chem.* 2002, 9, 2055.
- (4) For reviews on the synthesis of marine macrolides, see:
 (a) Norcross, R. D.; Paterson, I. *Chem. Rev.* 1995, 95, 2041.
 (b) Paterson, I.; Yeung, K.-S. *Chem. Rev.* 2005, *105*, in press.

- (5) In addition to the originally proposed structure by Professor Andersen, as reported in ref. 1, a preliminary stereochemical assignment was made by us for the C₁-C₁₁ region.
- (6) (a) Paterson, I.; Gibson, K. R.; Oballa, R. M. *Tetrahedron Lett.* 1996, *37*, 8585. (b) Paterson, I.; Collett, L. A. *Tetrahedron Lett.* 2001, *42*, 1187.
- (7) (a) Evans, D. A.; Coleman, P. J.; Côté, B. J. Org. Chem. **1997**, 62, 788. (b) Evans, D. A.; Côté, B.; Coleman, P. J.; Connell, B. T. J. Am. Chem. Soc. **2003**, 125, 10893.
- (8) Cowden, C. J.; Paterson, I. Organic Reactions, Vol. 51; Paquette, L. A., Ed.; Wiley: New York, 1997, 1–200.
- (9) (a) Paterson, I.; Wallace, D. J.; Velazquez, S. M. *Tetrahedron Lett.* 1994, *35*, 9083. (b) Paterson, I.; Wallace, D. J.; Cowden, C. J. *Synthesis* 1998, 639.
- (10) Crimmins, M. T.; Kirincich, M. T.; Wells, S. J.; Choy, A. L. Synth. Commun. 1998, 28, 3675.
- (11) All new compounds gave spectroscopic data in agreement with the assigned structures. Compound 2 had $[\alpha]_D^{22} = +34.5 (c \ 0.80, \text{CHCl}_3); {}^1\text{H NMR} (500 \text{ MHz}, \text{C}_6\text{D}_6):$ $\delta = 7.78 - 7.83 (m, 4 H, ArH), 7.22 - 7.29 (m, 6 H, ArH), 5.60$ $(dd, J = 9.9, 2.4 Hz, 1 H, H_{15}), 5.51 (dd, J = 9.9, 1.7 Hz, 1 H,$ H₁₆), 4.38 (m, 1 H, H₁₁), 4.22 (m, 1 H, H₉), 4.07 (m, 1 H, H₃), $4.03 \text{ (m, 1 H, H_7)}, 3.94 \text{ (m, 1 H, H}_{21eq.}), 3.88 \text{ (m, 3 H, 2 × H}_1,$ H_{21ax}), 3.81 (m, 1 H, H₁₃), 3.15 (m, 1 H, H₂₀), 3.10 (s, 3 H, OMe), 2.12 (m, 1 H, H₈), 2.10 (m, 1 H, H₂), 2.09 (1H, m, H_{10}), 2.04 (m, 1 H, H_{10}), 2.02 (m, 1 H, H_{14}), 1.97 (m, 1 H, H_{19ax}), 1.93 (m, 2 H, 2 × H_{12}), 1.84 (m, 1 H, H_{18eq} , H_{19eq}), 1.82 (m, 1 H, H₂), 1.76 (m, 1 H, H₈), 1.65 (m, 1 H, H_{6eq}), $1.58 (m, 1 H, H_{4eq.}), 1.50 (m, 1 H, H_{18ax.}), 1.49 (m, 2 H,$ $2 \times H_5$, 1.36 (m, 1 H, H_{6ax}), 1.25 (m, 1 H, H_{4ax}), 1.19 (s, 9 H, Si'Bu), 1.05 (s, 9 H, Si'Bu), 1.03 (s, 9 H, Si'Bu), 0.80 (d, J = 7.1 Hz, 3 H, Me₁₄), 0.26 (s, 3 H, SiMe), 0.28 (s, 3 H, SiMe), 0.24 (s, 3 H, SiMe), 0.20 (s, 3 H, SiMe); ¹³C NMR $(125 \text{ MHz}, C_6 D_6): \delta = 135.8, 135.7, 134.2, 134.1, 134.0,$ 129.7, 129.4, 93.0, 74.9, 71.0, 68.4, 68.3, 67.7, 67.6, 63.7, 61.5, 55.7, 46.6, 43.0, 42.5, 36.3, 34.5, 34.3, 30.8, 29.8, 27.0, 26.1, 26.0, 25.3, 19.3, 18.8, 18.2, 18.1, 17.0, -3.5, -3.7, -3.9, -4.0; HRMS (ES+): m/z [M + H]⁺ calcd for C₅₁H₈₇O₇Si₃: 895.5754; found: 895.5752.
- (12) The configuration at C₁₃ was confirmed by ¹H NMR analysis using the Kakisawa–Mosher method: Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. **1991**, 113, 4092.
- (13) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769.
- (14) Tsuji, J. Synthesis 1984, 369.
- (15) (a) Smith, A. B.; Minbiole, K. P.; Verhoest, P. R.; Schelhaas, M. *J. Am. Chem. Soc.* 2001, *123*, 10942.
 (b) Dihydropyranone 12 was conveniently accessed via a Jacobsen hetero-Diels–Alder reaction between Danishefsky's diene and TPSO(CH₂)₂CHO in 94% yield and 99% ee.
- (16) Paterson, I.; Smith, J. D.; Ward, R. A. *Tetrahedron* 1995, *51*, 9413.
- (17) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560.
- (18) (a) Paterson, I.; Anderson, E. A.; Dalby, S. M.; Loiseleur, O. *Org. Lett.* **2005**, *7*, 4121. (b) Paterson, I.; Anderson, E. A.; Dalby, S. M.; Loiseleur, O. *Org. Lett.* **2005**, *7*, 4125.
- (19) For other synthetic studies towards spirastrellolide, see:
 (a) Liu, J.; Hsung, R. P. Org. Lett. 2005, 7, 2273.
 (b) Paterson, I.; Anderson, E. A.; Dalby, S. M.; Loiseleur, O. Abstracts of Papers 229th National Meeting of the American Chemical Society, San Diego; ACS: Washington D.C., 2005, ORGN-331.
 (c) Wang, C.; Forsyth, C. J. Abstracts of Papers 229th National Meeting of the American Chemical Society, San Diego; ACS: Washington D.C., 2005, San Diego; ACS: Washington D.C., 2005,