

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Novel sulfamoyl benzamides as selective CB₂ agonists with improved in vitro metabolic stability

Ian Sellitto^a, Bertrand Le Bourdonnec^{a,*}, Karin Worm^a, Allan Goodman^a, Markku A. Savolainen^a, Guo-Hua Chu^a, Christopher W. Ajello^a, Christopher T. Saeui^a, Lara K. Leister^a, Joel A. Cassel^b, Robert N. DeHaven^b, Christopher J. LaBuda^b, Michael Koblish^b, Patrick J. Little^b, Bernice L. Brogdon^c, Steven A. Smith^c, Roland E. Dolle^a

^a Department of Chemistry, Adolor Corporation, 700 Pennsylvania Drive, Exton, PA 19341, USA ^b Department of Pharmacology, Adolor Corporation, 700 Pennsylvania Drive, Exton, PA 19341, USA ^c Department of DMPK, Adolor Corporation, 700 Pennsylvania Drive, Exton, PA 19341, USA

ARTICLE INFO

Article history: Received 27 August 2009 Revised 13 October 2009 Accepted 14 October 2009 Available online 17 October 2009

Keywords: CB₂ Agonists Analgesics

ABSTRACT

A lead optimization campaign in our previously reported sulfamoyl benzamide class of CB₂ agonists was conducted to improve the in vitro metabolic stability profile in this series while retaining high potency and selectivity for the CB₂ receptor. From this study, compound **14**, *N*-(3,4-dimethyl-5-(morpholinosulfo-nyl)phenyl)-2,2-dimethylbutanamide, was identified as a potent and selective CB₂ agonist exhibiting moderate in vitro metabolic stability and oral bioavailability. Compound **14** demonstrated in vivo efficacy in a rat model of post-surgical pain.

© 2009 Elsevier Ltd. All rights reserved.

The cannabinoid receptors CB₁ and CB₂ belong to the super family of G-protein coupled receptors. While CB1 receptors are expressed in the central nervous system (CNS), CB₂ receptors are mainly localized in peripheral nerve terminals and in the tissues of the immune system.¹ These receptors are activated by cannabinoid ligands that are either produced endogenously (known as endocannabinoids) or administered exogenously in the form of natural or synthetic compounds. Cannabis sativa contains the active component Δ^9 -tetrahydrocannabinol (THC, 1) that displays a wide range of beneficial pharmacological effects including analgesia and anticonvulsive activity.²⁻⁶ THC also elicits a number of undesirable CNS effects such as psychotomimetic effects and impaired memory function. These undesired effects are believed to be mediated via activation of the CB₁ receptors in the CNS.⁷ Separating the therapeutic effects of cannabinoid agonists from their undesired effects could be accomplished by either preventing the ligands from crossing the blood-brain barrier⁸ or by increasing the selectivity of the ligands for the CB₂ receptor.⁹ Several CB₂ selective agonists have been previously reported.¹⁰ GW405833 (2, Fig. 1) was shown to produce CB_2 mediated antihyperalgesic activity in numerous rodent models of pain.¹¹ AM1241 (**3**, Fig. 1) reversed carrageenan induced inflammatory thermal hyperalgesia

in rats. This effect was blocked by pretreatment with a CB₂ selective antagonist but not by a CB₁-selective antagonist.^{12,13} These results support the development of novel small molecule CB₂ agonists for the treatment of pain.¹⁴ More recent research has led to the identification of structurally diverse classes of CB₂ agonists, including benzimidazoles (**4**),¹⁵ oxadiazoles (**5**),¹⁶ aryl sulfonamides (**6**),¹⁷ and pyrimidines (**7**).¹⁸

We identified recently a novel series of phenylsulfonamides as selective CB₂ agonists.^{19,20} Compound **8**,²⁰ the lead derivative in this series displayed good affinity at the CB₂ receptor (K_i = 23 nM) and 150-fold selectivity over the CB₁ receptor; however, this compound displayed poor metabolic stability in rat and human liver microsomes (Fig. 2). We report here the summary of the lead optimization campaign conducted to improve upon the metabolic stability of **8**, while retaining potent affinity and selectivity at the CB₂ receptor.

Compounds **9–21** were prepared according to Scheme 1. Chlorosulfonylation of commercially available substituted nitrobenzenes (**32a–e**) was achieved in excellent yield using chlorosulfonic acid. Condensation of the corresponding sulfonyl chlorides with morpholine followed by reduction of the nitro functionality yielded the substituted aniline derivatives **33a–e**. The target compounds **9–21** were prepared from **33a–e** under classical amide formation methodologies. The synthesis of the 2,3-dihydro-*1H*-indene and 1,2,3,4-tetrahydronaphthalene derivatives, **22** and **23**,

^{*} Corresponding author. Tel.: +1 484 595 1061; fax: +1 484 595 1513. *E-mail address*: blebourdonnec@adolor.com (B.L. Bourdonnec).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2009.10.062

Figure 1. Structures of 1-7.

Figure 2. Sulfamoyl benzamide class of CB₂ agonists: lead optimization.

respectively, is outlined in Scheme 2. Nitration of **34a** or **34b** using nitronium tetrafluoroborate, followed by chlorosulfonylation of the resulting nitrobenzene derivatives afforded an inseparable 1:1 mixture of regioisomers (**35a,b** or **36a,b**). These regioisomers were carried through the synthetic scheme as a mixture until the final step where they were separated by column chromatography. Reaction of the sulfonyl chloride (**35a,b** or **36a,b**) with morpholine followed by reduction of the nitro functionality of the corresponding sulfonamides provided the aniline derivatives **37a,b** or **38a,b**. Treatment of **37a,b** or **38a,b** with 2,2-dimethylbutyryl chloride in the presence of triethylamine yielded the desired compounds **22** or **23**, respectively.

The 230 member sulfonamide library **44** was synthesized as indicated in Scheme 3. Condensation of commercially available 1,2-dimethyl-4-nitrobenzene (**32b**) with fuming sulfuric acid afforded the sulfonic acid **40** in quantitative yield. Palladium catalyzed reduction of the nitro moiety of **40** provided the corresponding aniline derivative (**41**), which was converted to the amide **42** by treatment with 2,2-dimethylbutyryl chloride in the presence

32a, **33a**: R^1 =CH₃, R^2 =H, R^3 =H **32b**, **33b**: R^1 =CH₃, R^2 =CH₃, R^3 =H **32c**, **33c**: R^1 =CH₃, R^2 =H, R^3 =CH₃ **32d**, **33d**: R^1 =H, R^2 =CH₃, R^3 =CH₃ **32e**, **33e**: R^1 =CH₃, R^2 =CH₃, R^3 =CH₃

Scheme 1. Reagents and conditions: (a) chlorosulfonic acid, 90–94%; (b) morpholine, EtOAc, 94%; (c) Fe, NH₄Cl, EtOH, H₂O, 100%; (d) for synthesis of **12**, **17**: R⁴COOH, BOPCl, THF, 16–20%; (e) for synthesis of **9**, **10**, **13**: R⁴COOH, TBTU, *i*Pr₂EtN, CH₃CN, 14–46%; (f) for synthesis of **15**, **16**, **18**: R⁴COOH, BEP, *i*Pr₂EtN, CH₂Cl₂, 13–37%; (g) for synthesis of **11**, **14**, **19–21**: R⁴COCl, Et₃N, THF, 52–75%.

of triethylamine. Treatment of **42** with phosphorus pentachloride afforded the sulfonyl chloride derivative **43**, used for the library synthesis. A set of 230 amines were condensed with **43**, in the presence of polystyrene bound diisopropylethylamine to give the corresponding sulfonamides. Selected compounds (**24–31**) (see discussion) were resynthesized according to Scheme 3.

The target compounds **9–31** were evaluated for their affinity toward the cloned human CB₁ and CB₂ receptors, by measuring their ability to displace [³H]CP-55940 in membranes containing CB₁ and

Scheme 2. Reagents and conditions: (a) NO_2BF_4 , CH_2Cl_2 , 0 °C, 60–65%; (b) furning H_2SO_4 , 99% for n = 1, 2; (c) PCl_5 , CH_2Cl_2 , 63–69%; (d) morpholine, CH_2Cl_2 , 59–84%; (e) Pd/C, H_2 , 10 psi, MeOH, 82–88%; (f) 2,2-dimethyl-butyryl chloride, Et_3N , CH_2Cl_2 , 10–45% (separation of regioisomers by SiO₂ column chromatography).

Scheme 3. Reagents and conditions: (a) fuming H_2SO_4 , 99%; (b) Pd/C, H_2 , 10 psi, CH₃OH, 99%; (c) 2,2-dimethyl-butyryl chloride, Et₃N, CH₂Cl₂, 51%; (d) PCl₅, CH₂Cl₂, 82%; (e) NHR¹R², PS-*i*Pr₂EtN, THF, 50–90% (library synthesis); (f) Et₃N, CH₂Cl₂, NHR¹R², 75–93% (for compounds **24–31**).

CB₂ receptors (Tables 1–3).¹⁹ Compounds displaying good affinity ($K_i < 50 \text{ nM}$) and selectivity [$K_i (CB_1)/K_i (CB_2) > 50$] for the CB₂ receptor, were evaluated for in vitro metabolic stability in rat and

Table 1

Cannabinoid receptor (CB₁ and CB₂) binding data, in vitro agonist activity (CB₂ GTP γ S) and in vitro metabolic stability of sulfamoyl benzamide derivatives

Compd	R ¹	R ²	K _i CB ₂ ^a (nM)	$\begin{array}{c} \text{EC}_{50}\\ \text{CB}_2{}^a\\ (n\text{M}) \end{array}$	K _i CB ₁ ^a (nM)	$K_i CB_1/K_i CB_2$	RLM ^b	HLM ^b
8	Н		23	11	3400	150	2	1
9	CH₃		16	66	1100	69	31	17
10	CH ₃		40	90	3100	78	37	52
11	CH ₃		120	nd ^c	nd ^c	nd ^c	nd ^c	nd ^c
12	CH ₃	ОН	2080	nd ^c	nd ^c	nd ^c	nd ^c	nd ^c
13	CH₃		6.6	11	780	120	22	11
14	CH3		17	38	2500	150	28	17
15	CH ₃		9.7	21	830	86	9	1
16	CH ₃		1.1	82	140	130	0	0
17	CH₃		110	nd ^c	nd ^c	nd ^c	nd ^c	nd ^c

^a Values are the geometric means computed from at least three separate determinations; for assay description see Ref. 21.

^b % Remaining after 30 min; RLM: rat liver microsomes, HLM: human liver microsomes; for assay description see Ref. 20.

^a nd: not determined.

human liver microsomes (abbreviated as RLM and HLM, respectively).²⁰ As indicated previously, compound **8** was identified as a selective CB₂ agonist (K_i CB₂ = 23 nM; K_i CB₁/ K_i CB₂ = 150).²⁰ However, **8** suffered from poor metabolic stability in vitro (2% and 1% remaining of parent compound after 30 min incubation in the presence of RLM and HLM, respectively). We postulated that the rapid metabolism of **8** may be due to hydroxylation of the benzene ring. In order to block this putative metabolic pathway, an additional methyl group was introduced at the 3-position of the benzene template of **8**, to give the xylene analog **9**. As indicated in Table

390

Table 2

Cannabinoid receptor (CB₁ and CB₂) binding data, in vitro agonist activity (CB₂ GTP γ S) and in vitro metabolic stability of sulfamoyl benzamide derivatives

Compd	R ¹	R ²	R ³	K _i CB ₂ ^a (nM)	$EC_{50} CB_2^a$ (nM)	K _i CB ₁ ^a (nM)	$\begin{array}{c} K_{\rm i} \ {\rm CB}_1/K_{\rm i} \\ {\rm CB}_2 \end{array}$	RLM ^b	HLM ^b
14 18 19 20 21 22 23	CH ₃ CH ₃ CH ₃ H CH ₃ - (CH ₂ - (CH ₂	CH ₃ H H CH ₃ CH ₃ 2) ₃ -	H H CH ₃ CH ₃ CH ₃ H H	17 290 760 15% ^d 410 12 14	38 nd ^c nd ^c nd ^c 28 47	2500 nd ^c nd ^c nd ^c 1700	150 nd ^c nd ^c nd ^c 140	28 nd ^c nd ^c nd ^c 9 2	17 nd ^c nd ^c nd ^c 10

^a Values are the geometric means computed from at least three separate determinations; for assay description see Ref. 21.

^b % Remaining after 30 min; RLM: rat liver microsomes, HLM: human liver microsomes; for assay description see Ref. 20.

^c nd: not determined.

 $^{d}\,$ % Inhibition at 10 μM

1, compound 9 displayed good affinity for the CB₂ receptor and 69fold selectivity for CB₂ over CB₁. In addition, 9 displayed a much improved metabolic stability profile when compared to its analog 8 (9: 31% and 17% remaining of parent in RLM and HLM, respectively). Based on this encouraging result, a series of carboxamide analogs of 9 (compounds 10-17) were prepared in order to increase the CB_1/CB_2 selectivity while maintaining potent affinity for the CB₂ receptor and good in vitro metabolic stability. The in vitro binding and metabolic stability data for compounds 10-17 are summarized in Table 1. Substitution of the 2,2,3,3-tetramethylcyclopropanecarboxyl group of 9 with a pivaloyl moiety, as in 10, led to a slight decrease in the binding affinity toward the CB_2 receptor (**10**: $K_i CB_2 = 40$ nM). However, this structural modification led to an improvement in the HLM metabolic stability (52% remaining of parent after 30 min incubation). Replacement of the tert-butyl group of **10** with a more bulky 2-methyl-2-phenyl propyl group (compound 11) was accompanied by a threefold decrease in the CB₂ binding affinity, suggesting that the lipophilic pocket in which the tert-butyl group of 10 interacts is relatively small. As anticipated, substitution of the *tert*-butyl group of **10** with a more polar 2-hydroxy-2-methyl-propyl moiety led to a 52-fold decrease in the affinity toward the CB₂ receptor. The pivaloyl group of 10 was efficiently replaced by a 3,3,3-trifluoro-2-methyl-2-(trifluoromethyl)propanyl moiety (13). Indeed, 13 demonstrated increased CB₂ receptor binding affinity ($K_i = 6.6 \text{ nM}$) and improved CB₁/CB₂ receptor selectivity (120-fold), when compared to 10. However, this modification also led to a decrease in the in vitro metabolic stability. Extending the key tert-butyl lipophilic moiety of **10** to a dimethylbutanoyl group (**14**) was beneficial to improve the CB₂ binding affinity and the CB₁/CB₂ selectivity while maintaining moderate metabolic stability. Changing the dimethylbutanoyl group of 14 to a dimethylpentanoyl (15) or dimethylhexanoyl (16) moieties led to a further increase in the CB₂ affinity. Unfortunately, compounds 15 and 16 also displayed poor metabolic stability, potentially attributed to an increase in

Table 3

Cannabinoid receptor (CB_1 and CB_2) binding data, in vitro agonist activity (CB_2 GTP γ S) and in vitro metabolic stability of sulfamoyl benzamide derivatives

Comp	d R ¹	$K_i CB_2^a$ (nM)	$\begin{array}{c} CB_2 \ EC_{50}{}^a \\ (nM) \end{array}$	$K_i CB_1^a$ (nM)	$K_i CB_1/K_i CB_2$	RLM ^c	HLM ^c
24	2 N	94	98	3400	36	nd ^d	nd ^d
25	N OF	1 ₉₀	73	6.3% ^b	nd ^d	nd ^d	nd ^d
26	S N N N N N N N N N N N N N N N N N N N	66	135	3800	57	nd ^d	nd ^d
27	S∑NOH	43	98	8.3% ^b	nd ^d	nd ^d	nd ^d
28	N	9.0	22	1800	200	0	0
29	N S=0	8.4	20	18% ^b	nd ^d	10	1
30	ک ^ر _N∕_S	6.9	12	2100	300	0	0
31	S-N	2.7	13	650	240	0	0

^a Values are the geometric means computed from at least three separate determinations; for assay description see Ref. 21.

^b % Inhibition at 10 μM.

^c % Remaining after 30 min; RLM: rat liver microsomes, HLM: human liver microsomes; for assay description see Ref. 20.

^d nd: not determined.

the overall lipophilicity and/or flexibility of the molecules. Compound 14, was then selected for further lead optimization based on its favorable overall in vitro profile. As shown in Table 2, replacement of the methyl substituent at the R² position of the phenyl ring of 14 with a hydrogen atom (compound 18) led to a 17-fold reduction in the CB₂ binding affinity. Similarly, changing the substitution pattern of the dimethyl groups of 14 relative to the benzene ring, as in 19 and 20, resulted in a significant decrease in the affinity toward the CB₂ receptor. Furthermore, introduction of a third methyl group at the R³ position of **14** was detrimental to the CB₂ affinity (**21**: K_i = 410 nM). We next investigated the effect of replacing the xylene core of **14** with 2,3-dihydro-1*H*-indene (22) and 1,2,3,4-tetrahydronaphthalene templates (23). As shown in Table 2, compounds 22 and 23, exhibited potent affinity at the CB_2 receptor (K_i of 12 and 14 nM, respectively) as well as greater than 1000-fold selectivity for CB₂ versus CB₁. However, neither compound possessed the in vitro metabolic stability sufficient to warrant further investigation.

Table 4

Pharmacokinetic parameters of ${\bf 14}$ in male Sprague-Dawley rats after iv and po administration

Pharmacokinetic	iv	ро
Dose (mg/kg)	1.0	100
CLs (L/h/kg)	4.2 ± 0.2	_
Vdss (L/kg)	2.5 ± 0.7	-
$t_{1/2}^{a}(h)$	0.7 ± 0.1	nd ^c
$AUC_{0-\infty}$ (ng * h/mL)	237 ± 13	4805 ± 2051
$T_{\rm max}^{b}(h)$	_	6 (6-8)
$C_{\rm max} (\rm ng/mL)$	_	1221 ± 450
F (%)	_	22 ± 9

Values represent the mean ± standard deviation of three animals.

^a Expressed as harmonic mean.

^b Expressed as median and range

^c nd: not determined.

Figure 3. Time course of the in vivo activity of **14** in the rat hindpaw incision model. Mechanical paw withdrawal thresholds for the left hindpaw, compound **14**, a non-sedating dose of morphine and vehicle treatment groups. Data are plotted as the mean (\pm SEM) withdrawal threshold for the left hindpaw. All statistical analysis was performed with one-way ANOVA followed by post-hoc comparisons (protected *t*-test) among groups. * *p* <0.05 compared to vehicle-treated, surgery group.

Structure–activity relationships at the sulfonamide moiety of **14** were also studied. A 230 member library of sulfonamides, direct analogs of **14**, was prepared and screened at the CB₂ receptor. Compounds displaying a CB₂ K_i of less than 100 nM were resynthesized and further purified in order to confirm the binding data obtained for the library compounds. The results are summarized in Table 3. We identified from this study several derivatives (e.g., **28–31**) displaying +high affinity and selectivity for the CB₂ receptors. However, these compounds all exhibited poor metabolic stability.

Based on its favorable in vitro profile, compound **14** was selected for pharmacokinetic studies. The pharmacokinetic parameters of **14** after iv (1 mg/kg) and po (100 mg/kg) administration to male rats are summarized in Table 4. Compound **14** demonstrates high systemic clearance with a short half-life of 0.7 h (iv). The oral bioavailability of **14** was 22%. Additional in vivo efficacy studies demonstrated that compound **14** (30 mg/kg, ip) exhibited a robust antiallodynic effect in the hindpaw incisional rodent model of post-surgical pain (Fig. 3).

In summary, further SAR investigation in the previously reported sulfonamide series of CB₂ agonists, led to the identification of several compounds (**15**, **16**, **28–31**) demonstrating potent affinity for the CB₂ receptor ($K_i < 10$ nM) and improved CB₁/CB₂ receptor selectivity (>200-fold), when compared to the original lead **8**. Compound **14** displayed the best overall in vitro profile and demonstrated robust efficacy in an animal model of post-operative pain. The lipophilic amide moiety of **14** was found to be of crucial importance for potent affinity at the CB₂ receptor. Among the various templates investigated, the xylene moiety of **14** was optimal to obtain good affinity and selectivity for the CB₂ receptor while maintaining moderate in vitro metabolic stability.

References and notes

- Howlett, A. C.; Barth, F.; Bonner, T. I.; Cabral, G.; Casellas, P.; Devane, W. A.; Felder, C. C.; Herkenham, M.; Mackie, K.; Martin, B. R.; Mechoulam, R.; Pertwee, R. G. *Pharmacol. Rev.* **2002**, *54*, 161.
- 2. Gaoni, Y.; Mechoulal, R. J. Am. Chem. Soc. 1964, 86, 1646.
- 3. Farquhar-Smith, W. P. Pain Rev. 2002, 9, 41.
- 4. Klein, T. W. Nat. Rev. Immunol. 2005, 5, 400.
- 5. Walter, L.: Stella, N. Br. J. Pharmacol. 2004, 141, 775.
- 6. Smith, P. F. Curr. Opin. Invest. Drugs 2005, 6, 680.
- 7. Rice, A. S. Curr. Opin. Invest. Drugs **2001**, 2, 399.
- 8. Cheng, Y.; Hitchcock, S. A. Expert Opin. Invest. Drugs 2007, 16, 951.
- 9. Anand, P.; Whiteside, G.; Fowler, C. J.; Hohmann, A. G. Brain Res. Rev. **2009**, 60,
- 255.
 Ashton, J. C.; Wright, J. L.; McPartland, J. M.; Tyndall, J. D. A. Curr. Med. Chem.
 2008. 15. 1428.
- Valenzano, K. J.; Tafesse, L.; Lee, G.; Harrison, J. E.; Boulet, J. M.; Gottshall, S. L.; Mark, L.; Pearson, M. S.; Miller, W.; Shan, S.; Rabadi, L.; Rotshteyn, Y.; Chaffer, S. M.; Turchin, P. I.; Elsemore, D. A.; Toth, M.; Koetzner, L.; Whiteside, G. T. Neuropharmacology **2005**, 48, 658.
- Quartilho, A.; Mata, H. P.; Ibrahim, M. M.; Vanderah, T. W.; Porreca, F.; Makriyannis, A.; Malan, T. P. Anesthesiology 2003, 99, 955.
- Ibrahim, M. M.; Deng, H.; Zvonok, A.; Cockayne, D. A.; Kwan, J.; Mata, H. P.; Vanderah, T. W.; Lai, J.; Porreca, F.; Makriyannis, A.; Malan, T. P. *Proc. Natl. Acad. Sci. U.S.A.* **2003**, 100, 10529.
- 14. Whiteside, G. T.; Lee, G. P.; Valenzano, K. J. Curr. Med. Chem. 2007, 14, 917.
- Pagé, D.; Balaux, E.; Boisvert, L.; Liu, Z.; Milburn, C.; Tremblay, M.; Wei, Z.; Woo, S.; Luo, X.; Cheng, Y.-X.; Yang, H.; Srivastava, S.; Zhou, F.; Brown, W.; Tamaszewski, M.; Walpole, C.; Hdzic, L.; St-Onge, S.; Godbout, C.; Salois, D.; Payza, K. Bioorg. Med. Chem. Lett. 2008, 18, 3695.
- DiMauro, E. F.; Buchanan, J. L.; Cheng, A.; Emkey, R.; Hitchcock, S. A.; Huang, L.; Huang, M. Y.; Janosky, B.; Lee, J. H.; Li, X.; Martin, M. W.; Tomlinson, S. A.; White, R. D.; Zheng, X. M.; Patel, V. F.; Fremeau, R. T., Jr. *Bioorg. Med. Chem. Lett.* 2008, 18, 4267.
- Ermann, M.; Riether, D.; Walker, E. R.; Mushi, I. F.; Jenkins, J. E.; Noya-Marino, B.; Brewer, M. L.; Taylor, M. G.; Amouzegh, P.; East, S. P.; Dymock, B. W.; Gemkow, M. J.; Kahrs, A. F.; Ebneth, A.; Löbbe, S.; O'Shea, K.; Shih, D.-T.; Thomson, D. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 1725.
- Giblin, G. M. P.; O'Shaughnessy, C. T.; Naylor, A.; Mitchell, W. L.; Eatherton, A. J.; Slingsby, B. P.; Rawlings, D. A.; Goldsmith, P.; Brown, A. J.; Haslam, C. P.; Clayton, N. M.; Wilson, A. W.; Chessell, I. P.; Wittington, A. R.; Green, R. J. Med. Chem. 2007, 50, 2597.
- Worm, K.; Zhou, Q. J.; Saeui, C. T.; Green, R. C.; Cassel, J. A.; Stabley, G. J.; DeHaven, R. N.; Conway-James, N.; LaBuda, C. J.; Koblish, M.; Little, P. J.; Dolle, R. E. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 2830.
- Goodman, A. J.; Ajello, C. W.; Worm, K.; Le Bourdonnec, B.; Savolainen, M. A.; O'Hare, H.; Cassel, J. A.; Stabley, G. J.; DeHaven, R. N.; LaBuda, C. J.; Koblish, M.; Little, P. J.; Brogdon, B. L.; Smith, S. A.; Dolle, R. E. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 309.
- Binding assays were performed by modification of the method of: Pinto, J. C.; Potie, F.; Rice, K. C.; Boring, D.; Johnson, M. R.; Evans, D. M.; Wilken, G. H.; Cantrell, C. H.; Howlett, A. *Mol. Pharmacol.* **1994**, *46*, 516; The [³⁵S]GTPγS binding method is a major modification of the method by: Selley, D. E.; Stark, S.; Sim, L. J.; Childers, S. R. *Life Sci.* **1996**, *59*, 659. Additional details are given in Ref. 19.