


Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Published on 20 April 2015. Downloaded by University of Alberta on 26/04/2015 17:55:28.

Cite this: DOI: 10.1039/c0xx00000x

communication

www.rsc.org/xxxxxx

Intramolecular Oxidative Coupling: I₂/TBHP/NaN₃-mediated Synthesis of Benzofuran Derivatives

Wengang Xu, Qingcui Li, Chuanpeng Cao, Fanglin Zhang* and Hua Zheng*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000

A novel intramolecular oxidative coupling reaction is established to prepare benzofuran derivatives via direct C(sp²)-H functionalization for the formation of C-O bond. This transformation is mediated by I₂/TBHP/NaN₃ under 10 metal-free conditions and catalytic amount of NaN₃ plays a crucial role in the reaction. Further, the reaction shows a broad substrate scope with middle to excellent yields.

Oxidative coupling reaction is a novel strategy to construct C-C bond¹ and C-heteroatom bond², which avoids pre-15 functionalization of easily available chemicals while improving the atom economy and step economy and has received significant interest over the last ten years. Especially, the efficient construction of useful heterocyclic compounds by using oxidative coupling reaction is an important research area in organic 20 synthesis.³ Numerous methods have been developed for carbonheteroatom bond formation in last decades.⁴ It is well-known that traditional oxidative coupling reactions are most dependent on transition metal catalyst. As a result, residual transition metal contaminant seriously limits their applications. Consequently, an 25 economical, environmentally friendly and metal-free strategy is drawing many chemists' attention.⁵

Benzofuran and their derivatives are the core structure of many clinical drugs and natural products, which have attracted the exploration of their synthesis methods. Molecules containing 30 these structural units have been shown to exhibit activities against cancer, plasmodium falciparum and so on.⁶ Series of methods for the synthesis of benzofuran derivatives have been reported.⁷ However, investigation on direct C-H functionalization and C-O bond formation of benzofuran derivatives remains rare.

To date, a lot of novel strategies of C-H functionalization and C-O bond formation via oxidative coupling make a big breakthrough.⁸ However, there are extreme conditions in oxidative coupling reaction with phenolic hydroxyl due to phenols are ready to undergo oxidative dearomatization to yield 40 quinones. To our best knowledge, oxidative C(sp²)-H functionalization and C-O bond formation with phenolic hydroxyl generally falls into one of the following types. Type I, early in 2000. Boudet and his co-workers¹⁰ revealed that 4hydroxycinnamyl aldehydes incorporate into lignins by 45 examining transgenic plants via intermolecular radical coupling reactions (Scheme 1). And authors think that this process appears to reflect simple chemical coupling propensities. Type II,

Alessandra Lattanzi¹¹ and Duan¹² separately developed a new strategy for the synthesis of benzofuran derivatives via C(sp²)-O 50 coupling reaction(Type II, a). However, their methods are only efficient for electron-rich systems. Later, liu¹³, Yoshikai¹⁴ and Zhu¹⁵ reported Pd or Cu catalyzed C(sp²)-H functionalization of 2-arylphenols via oxidative cyclization respectively (Type II, b). At present, there is no report describing intramolecular oxidative 55 functionalization of electron-deficient systems for preparing benzofuran derivatives under metal-free conditions. Accordingly, exploration of this novel oxidative coupling methods is still of great significance.

Previous work

Type I Intermolecular C(sp²)-H bond functionalization and C-O bond formation

Type II Intramolecular C(sp²)-H bond functionalization and C-O bond formation

This work

Intramolecular C(sp²)-H bond functionalization and C-O bond formation

Scheme 1 Different kinds of C-H Functionalization

Recently, I₂ (iodine) system¹⁶ has received considerable attention as a mild, non-toxic and selective reagent in organic 85 synthesis. As a continuous study on the direct C-H functionalization and C-O bond formation, we herein describe an efficient I₂-catalyzed intramolecular oxidative coupling reaction of 2-hydroxychalcones under metal-free conditions. In addition, catalytic amount of NaN₃ plays a crucial role in the oxidative

coupling reaction and a new plausible mechanism which may be virtually through C(sp³)-H functionalization has been proposed.

Table 1 Optimization of the Reaction Conditions^a

Entry	Oxidant	Additive	Solvent	Catalyst	Yield ^b
1	TBHP ^c	NaN ₃	CH ₃ CN	I_2	40
2	/	NaN_3	CH ₃ CN	I_2	NO
3	TBHP	/	CH ₃ CN	I_2	NO
4	TBHP	NaN_3	CH ₃ CN	/	NO
5	Others ^d	NaN_3	CH ₃ CN	I_2	NO
6	TBHP	Others ^e	CH ₃ CN	I_2	NO
7	TBHP	NaN_3	CH_3NO_2	I_2	NO
8	TBHP	NaN_3	DCE	I_2	NO
9	TBHP	NaN_3	dioxane	I_2	NO
10	TBHP	NaN_3	CH ₃ CN ^f	I_2	60
11	TBHP	NaN_3	toluene	I_2	20
12	TBHP	NaN_3	C_2H_5OH	I_2	87
13	TBHP	NaN_3^g	C_2H_5OH	I_2	87
14	TBHP	NaN3h	C ₂ H ₅ OH	I_2	88
15	TBHP	NaN_3^h	C_2H_5OH	Others ⁱ	NO
16	TBHP	NaN_3^h	C_2H_5OH	KI	78
17	TBHP	NaN_3^h	C_2H_5OH	TBAI	83
9-					

^aReaction conditions: **1a** (0.25 mmol), oxidant (0.5 mmol), additive (1 mmol) and catalyst (0.025 mmol) in solvent (4.0 mL) at 80°C, unless otherwise stated ^bIsolated yields. NO means that no product was observed. ^cAll TBHP (70% in water). dOther oxidants include PIDA, mCPBA, K2S2O8, DTBP. oOther additives include K2CO3, Na2CO3, NaHCO3, NaOH, NaH2PO4·2H2O, $KH_{2}PO_{4}, \quad K_{3}PO_{4} \cdot 3H_{2}O, \quad KSCN, \quad (NH_{4})_{3}PO_{3} \cdot 3H_{2}O. \quad ^{f}CH_{3}CN : H_{2}O=1:1. \quad ^{g}2.0$ equivalent of NaN3 was used. h0.2 equivalent of NaN3 was used. Other acids include p-TSA, BF₃·Et₂O, TfOH, FeCl₃, CuCl₂.

Initially, trans-2-hydroxychalcone (1a, 0.25 mmol) was used as the model substrate for the synthesis of desired product (2a). As shown in table 1, 2a was obtained in 40% yield in the 10 presence of catalytic amount of I₂ (iodine), 0.5 mmol TBHP (tertbutylhydroperoxide, 70% in water) and 1 mmol NaN₃ (Table 1, entry 1). In the absence of I2, TBHP or NaN3, no product was obtained (Table 1, entries 2-4). To further optimize the conditions, different oxidants, additives and catalysts were tested. Employing 15 other oxidants: PIDA (iodobenzene diacetate), mCPBA (mchloroperoxybenzoic acid), K₂S₂O₈ or DTBP (tert-butyl peroxide), unfortunately, yielded no product (Table 1, entry 5). Using other additives instead of NaN3, we also did not observe desired product (Table 1, entry 6). Solvent screening showed that 20 EtOH, MeCN/H₂O, and toluene were also effective for the reaction, while DCE and 1,4-dioxane were ineffective for the reaction (Table 1, entries 7-12). Decreasing NaN3 to 0.5 mmol made no difference to the yield (Table 1, entry 13). Catalytic amount of NaN₃ (0.05 mmol) was employed out of concern that 25 NaN₃ could be recycled in reaction process and, as expected, target product was obtained in good yield (Table 1, entry 14). In

addition, when I₂ was replaced by other acids, including CuCl₂, FeCl₃, BF₃·Et₂O, p-TSA and TfOH, no product was observed (Table 1, entry 15). What's more, when KI or TBAI 30 (tetrabutylammonium iodide) was used, the desired coupling product 2a was also obtained in the yield lesser than I₂ as the catalyst (Table 1, entries 16 and 17). On the basis of these results, the optimized reaction conditions were concluded to be 0.1 equivalent of I2, 0.2 equivalent of NaN3 and 2.0 equivalent of 35 TBHP in C₂H₅OH at 80 °C.

Table 2 Exploring Generality and Scope of the Novel Reaction^{a,b}

10% I₂

^aAll the reactions were carried out using 1 (0.25 mmol), I₂ (0.025 mmol), TBHP (0.5 mmol) and NaN₃ (0.05 mmol) in C₂H₅OH (4.0 mL) at 80 °C. ^bIsolated yields

2q(87%)

2p(48%)

2s(75%)

2r(86%)

With the optimal reaction conditions in hand, we then examined the transformation of trans-2-hydroxychalcones equipped with a variety of substituents to explore generality and

Published on 20 April 2015. Downloaded by University of Alberta on 26/04/2015 17:55:28.

Published on 20 April 2015. Downloaded by University of Alberta on 26/04/2015 17:55:28

scope. It was observed that substituents on the R¹ ring almost leaded to good yields (Table 2, 2b-2f, 2h, 2i, 2k and 2l). Omethyl and p-methyl conducted almost complete transformation (Table 2, 2b and 2d). M-methyl, p-methoxyl, m-bromo, o-bromo 5 and o-chloro gave target products in>80% yields (Table 2, 2c, 2e, 2h and 2k), while p-Br, p-Cl led to the corresponding products in moderate yields (Table 2, 2g and 2j). When changing the substituents on R² Ring, different results appeared (Table 2, 2m-2p). Substrates equipped with 5-Cl or 5-Br gone through great 10 transformation. Similarly, substrate equipped with methoxyl got middle yield. When R² was a strong electron-withdrawing group (5-NO₂), trace desired product was observed under the optimized reaction conditions. Remarkably, this strategy was further successfully applied to heterocyclic substrates to synthesize 15 corresponding products in good yields (Table 2, 2q-2s).

Scheme 2 Further Application of the Novel Reaction

We further applied this practical procedure to the trans-2hydroxychalcone substituted by alkyl groups (Scheme 3). An interesting result occurred. When alkyl groups linked to the the carbonyl group with primary carbon or secondary carbon, no desired products was isolated. However, trans-2-hydroxychalcone 35 bearing tertiary carbon was successfully transformed to 1-(benzofuran-2-yl)-2-methylpropan-1-one in 48% yield (Scheme 3, 2t).

ΗΙ NaN_3 Nal + HN₃ Scheme 3 Plausible Mechanism

tBuOOH

According to our experimental data, when other additives 60 were employed instead of NaN3, no desired product was obtained (Table 1, entry 6). Besides, target product was got while catalytic amount of NaN3 was used (Table 1, entry 14). On the basis of these results, a plausible mechanism was shown in Scheme 4. First, NaN3 as a nucleophile reacts with 1a via Michael-type 65 addition reaction to deliver unstable intermediate A. This transformation efficiency could be improved in the presence of catalytic amount of iodine. Subsequently, A could easily be oxidized by iodine to give intermediate B, which is converted to the product C after loss of NaI. Then, C losses HN₃ catalyzed by 70 I₂, which is similar to loss H₂O. At last, NaI and HN₃ exchanged and oxidized by TBHP to I₂ and NaN₃. Obviously, formation of 2a was more favorable and fast process.

In summary, this paper described a novel and efficient method for the synthesis of benzofuran derivatives under metal-75 free conditions. In this transformation, a broad substrate scope has been demonstrated and catalytic amount of NaN3 plays a crucial role in the oxidative coupling reaction. The possible domino Michael addition and intramolecular oxidative coupling reaction mechanism is also proposed. Studies on novel oxidative 80 functionalization are being actively pursued in this laboratory.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51273156).

Notes and references

115

85 aSchool of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China. Fax: (+86)027 9300. Tel: (+86)0278774 9300: E-mail: fanglinzhang0210@gmail.com or zhenghua.whut@126.com

†Electronic Supplementary Information (ESI) 90 DOI: 10 1039/b000000x/

- (a) J. A. Ashenhurst, Chem. Soc. Rev., 2010, 39, 540-548. (b) W. Shi, C. Liu and A. Lei, Chem. Soc. Rev., 2011, 40, 2761-2776.
- (a) A. Corma, A. Leyva-Perez and M. J. Sabater, Chem. Rev., 2011, 111, 1657-1712. (b) I. P. Beletskaya and V. P. Ananikov, Chem. Rev., 2011, 111, 1596-1636.
- 3 (a) W. Gong, L. Xu, T. Ji, P. Xie, X. Qi, C. U. Pittman and A. Zhou, RSC Adv., 2014, 4, 6854-6857. (b) P. Li, J. Zhao, C. Xia and F. Li, Org. Lett., 2014, 16, 5992-5995.
- (a) J. Yuan, C. Liu and A. Lei, Chem. Commun., 2015, 51, 1394-1409. (b) Q. Wang, H. Zheng, W. Chai, D. Chen, X. Zeng, R. Fu and R. Yuan, Org. Biomol. Chem., 2014, 12, 6549-6553. (c) X. Li, B. Li, J. You and J. Lan, Org. Biomol. Chem., 2013, 11, 1925-1928.
- (a) J. Zhao, P. Li, C. Xia and F. Li, Chem. Commun., 2014, 50, 4751-4754. (b) R. Samanta, K. Matcha and A. P. Antonchick, Eur. J. Org. Chem., 2013, 2013, 5769-5804.
- (a) Z. Yu, J. A. Brannigan, D. K. Moss, A. M. Brzozowski, A. J. Wilkinson, A. A. Holder, E. W. Tate and R. J. Leatherbarrow, J. Med. Chem., 2012, 55, 8879-8890. (b) R. E. Ziegert, J. Torang, K. Knepper and S. Brase, J. Comb. Chem., 2005, 7, 147-169. (c) B. L. Flynn, E. Hamel and M. K. Jung, J. Med. Chem., 2002, 45, 2670-2673. (d) B. Carlsson, B. N. Singh, M. Temciuc, S. Nilsson, Y. L. Li, C. Mellin and J. Malm, J. Med. Chem., 2002, 45, 623-630.
- (a) J. Chen, J. Li and W. Su, Org. Biomol. Chem., 2014, 12, 4078-4083. (b) Y. Ji, P. Li, X. Zhang and L. Wang, Org. Biomol. Chem., 2013, 11, 4095-4101. (c) C. Martinez, R. Alvarez and J. M. Aurrecoechea, Org. Lett., 2009, 11, 1083-1086. (d) Z. Liang, W. Hou, Y. Du, Y. Zhang, Y. Pan, D. Mao and K. Zhao, Org. Lett., 2009, 11, 4978-4981. (e) X. Guo, R. Yu, H. Li and Z. Li, J. Am. Chem. Soc., 2009, 131, 17387-17393. (f) B. Lu, B. Wang, Y. Zhang and D. Ma, J. Org. Chem., 2007, 72, 5337-5341.

- (a) M. Ciufolini, N. Braun, S. Canesi, M. Ousmer, J. Chang and D. Chai, Synthesis, 2007, 2007, 3759-3772. (b) S. Quideau, L. Pouysegu and D. Deffieux, Curr. Org. Chem., 2004, 8, 113-148. (c) P. Wipf and S. Rodríguez, Synthesis, 2004, 2767-2783.
- H. Kim, J. Ralph, N. Yahiaoui, M. Pean and A. M. Boudet, Org. Lett., 2000. **2**. 2197-2200.
- A. Lattanzi, A. Senatore, A. Massa and A. Scettri, J. Org. Chem., 2003, 68, 3691-3694.
- 15 13 X. F. Duan, J. Zeng, Z. B. Zhang and G. F. Zi, J. Org. Chem., 2007, 72, 10283-10286.
 - 14 B. Xiao, T. J. Gong, Z. J. Liu, J. H. Liu, D. F. Luo, J. Xu and L. Liu, J. Am. Chem. Soc., 2011, 133, 9250-9253.
 - 15 Y. Wei and N. Yoshikai, Org. Lett., 2011, 13, 5504-5507.
- 20 16 (a) J. Zhao, Y. Wang, Y. He, L. Liu and Q. Zhu, Org. Lett., 2012, 14, 1078-1081. (b) J. Zhao, Q. Zhang, L. Liu, Y. He, J. Li, J. Li and Q. Zhu, Org. Lett., 2012, 14, 5362-5365.
 - 17 (a) M. Chennapuram, N. R. Emmadi, C. Bingi and K. Atmakur, RSC Adv., 2015, 5, 19418-19425. (b) K. K. D. R. Viswanadham, M. Prathap Reddy, P. Sathyanarayana, O. Ravi, R. Kant and S. R.
- Bathula, Chem. Commun., 2014, 50, 13517-13520. (c) B. A. Dar, N. A. Dangroo, A. Gupta, A. Wali, M. A. Khuroo, R. A. Vishwakarma and B. Singh, Tetrahedron Lett., 2014, 55, 1544-1548. (d) N. M. Mishra, D. D. Vachhani, S. G. Modha and E. V. Van der Eycken, Eur.
- J. Org. Chem., 2013, 2013, 693-700. (e) J. Dhineshkumar, M. Lamani, K. Alagiri and K. R. Prabhu, Org. Lett., 2013, 15, 1092-1095.

Published on 20 April 2015. Downloaded by University of Alberta on 26/04/2015 17:55:28.