

Tetrahedron Letters 44 (2003) 3749-3754

TETRAHEDRON LETTERS

Toward the total synthesis of phorboxazole A: synthesis of an advanced C4–C32 subunit using the Jacobsen hetero Diels–Alder reaction

Ian Paterson* and Chris A. Luckhurst

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK

Received 26 February 2003; accepted 21 March 2003

Abstract—The tetrahydropyranone 3, representing a pentacyclic C_{4} – C_{32} segment of the phorboxazoles, was obtained by a complex hetero Diels–Alder (HDA) coupling performed between the 2-siloxydiene 23 and the oxazole aldehyde 4, mediated by the chiral tridentate Cr(III) catalyst 14. In preliminary studies, the tetrahydropyrans 17, 33 and 35 were accessed using this same asymmetric HDA methodology with varying stereoselectivity. © 2003 Elsevier Science Ltd. All rights reserved.

Phorboxazoles A (1, Scheme 1) and B (2) were isolated by Searle and Molinski¹ from the Indian Ocean sponge *Phorbas* sp. endemic to the western coast of Australia. Both C_{13} epimers were found to be potent cytostatic agents with a mean $GI_{50} < 0.79$ nM against the US NCI panel of 60 human cancer cell lines. The ability of the phorboxazoles to halt the cell cycle in S-phase provides a potential complement to the tubulin-mediated activity of antimitotic agents causing cell cycle arrest in the G_2/M phase. Owing to the significant structural complexity of these marine macrolides, their powerful biological activity and scarcity, the phorboxazoles have attracted considerable synthetic interest, leading to elegant total syntheses by Forsyth,² Evans³ and Smith,⁴ as well as to the preparation of various structural fragments by other groups.^{5,6}

Scheme 1.

^{*} Corresponding author.

^{0040-4039/03/\$ -} see front matter @ 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0040-4039(03)00754-8

As part of studies towards the synthesis of phorboxazole A, we have previously outlined our strategy and reported the synthesis of a tricyclic C_{15} - C_{32} subunit.⁶ We now report our latest efforts toward the preparation of a more advanced pentacyclic C_4 - C_{32} subunit **3**, incorporating three of the four tetrahydropyrans and the two oxazole rings present in the phorboxazole structure. This novel approach relies on the use of an intact oxazole aldehyde, such as **4**, in the assembly of the C_{11} - C_{15} *cis*-tetrahydropyranone ring by an asymmetric hetero Diels–Alder (HDA) coupling reaction.

A highly stereocontrolled construction of the C_{15} - C_{32} aldehyde 4, featuring the pentasubstituted tetrahydropyran and both 2,4-substituted oxazole rings of the phorboxazoles, as required for examining the pivotal asymmetric HDA coupling step, followed the sequence outlined in Scheme 2. This relied on a boronmediated aldol reaction^{6,7} between ketone 5 and aldehyde 6 to generate the anti, anti-adduct 7 (99%; >97:3 dr), which was subsequently elaborated over a four-step sequence into the aldehyde 8 by making use of an Evans-Tishchenko reduction (SmI₂, ^{*i*}PrCHO).⁸ To configure the 2.6-cis-tetrahydropyran ring in aldehyde 9, an improved procedure was developed for performing an intramolecular Michael-type reaction with an in situ generated enal. Homologation of 8 by a HWE reaction^{9a} using the phosphonate reagent of Nuzillard^{9b} gave the (E)-unsaturated Weinreb amide 10 (90%). Treatment of 10 with excess DIBAL (7 equiv.) in toluene, followed by an acidic work-up, then led to

diastereoselective conjugate addition of the liberated C_{26} hydroxyl group to form aldehyde 9, as a separable 8.3:1 mixture of C_{22} epimers.

The aldehyde **9** was then elaborated into **4** by a Peterson olefination performed using oxazole **11**.¹⁰ Thus, lithiation of **11** with LiNEt₂ at -78° C, followed by addition of aldehyde **9** led to efficient formation of the coupled product **12**, albeit with 2.2:1 *E/Z* selectivity. This mixture of geometric isomers was then completely equilibrated^{5a} under mild acidic conditions (PPTS, EtOH), with concomitant removal of the two TBS ethers, to give diol **13** (87%). Finally, chemoselective oxidation¹¹ of the primary hydroxyl group in **13** was achieved by use of catalytic TEMPO in the presence of BAIB, followed by silylation of the remaining C₂₄ alcohol to give the C₁₅–C₃₂ subunit **4**.

In order to assemble the C_{11} – C_{15} tetrahydropyran ring of phorboxazole A, we sought an asymmetric HDA process that would be amenable to the direct cycloaddition of an oxazole-containing aldehyde such as **4** with a suitable 2-siloxydiene. Initially, the viability of extending Jacobsen HDA methodology¹² to such heteroaromatic aldehydes was explored in a model system (Scheme 3). By employing the Cr(III) tridentate catalyst **14** (8 mol%, dry acetone, 20°C, 38 h), the asymmetric HDA reaction of oxazole aldehyde **15** proceeded with the 2-siloxydiene **16**^{2c,13} to generate the 2,6-*cis*-tetrahydropyran **17** in 81% ee and 85% yield based on

Scheme 2. *Reagents and conditions*: (*a*) 5, ^cHex₂BCl, Et₃N, Et₂O, 0°C, 1 h; 6, –78 to –20°C, 18 h; H₂O₂, MeOH, pH 7 buffer; (*b*) 'PrCHO, cat. SmI₂, THF, –20°C, 1.5 h; (*c*) TBSCl, ImH, DMAP, DMF, 20°C, 24 h; (*d*) DDQ, 20:1 CH₂Cl₂/pH 7 buffer, 20°C, 2 h; (*e*) (COCl)₂, DMSO, –78°C, 1.5 h; Et₃N, –78 to 20°C; (*f*) (MeO)₂P(O)CH₂C(O)NMe(OMe), LiCl, DBU, 4:1 MeCN/CH₂Cl₂, 20°C, 2.5 h; (*g*) DIBAL (7 equiv.), PhMe, –78°C, 2 h; NH₄Cl, 16 h; 8:3 NH₄Cl/1N HCl (aq), 20 min; (*h*) LiNEt₂, THF, –78°C; (*i*) PPTS (25 equiv.), EtOH, Δ, 2 days; (*j*) TEMPO (cat.), PhI(OAc)₂ (1.3 equiv.), CH₂Cl₂, 20°C, 30 min; (*k*) TBSOTf, 2,6-lutidine, CH₂Cl₂, -78°C.

into **19** by desilylation. Confirmation of the all-equatorial substitution in tetrahydropyran **19** was realised by NOE analysis, while derivatisation as the (R)- and (S)-MTPA esters enabled determination of the absolute configuration indicated, in agreement with the expected¹² sense of ligand stereoinduction. This model study demonstrated that the Jacobsen HDA reaction could indeed be used for the asymmetric assembly of the oxazole-tetrahydropyran ring system contained within the phorboxazole skeleton.

Scheme 3. Reagents and conditions: (a) 14 (8 mol%), 4 Å mol. sieves, 15, Me₂CO, 3 h; 16, 38 h; (b) AcOH (2 equiv.), TBAF (1.5 equiv.), THF, 20°C, 1.5 h; (c) L-Selectride, THF, -105° C, 2 h; (d) NaBH₄, MeOH, 0°C, 1 h; (e) 10% Pd/C (cat.), MeOH, H₂, 3 h, 20°C. # Yield based on recovered 16 and the corresponding enone hydrolysis product.

Scheme 4. *Reagents and conditions*: (*a*) $[(R,R)Cu(Ph-pybox)](SbF_6)_2$ (5 mol%), CH_2Cl_2 , -78°C, 16 h; PPTS, MeOH; (*b*) K_2CO_3 , MeOH, 20°C, 17 h; (*c*) DIBAL, CH_2Cl_2 , -50°C; Ac_2O , py, DMAP, CH_2Cl_2 , -78 to 0°C; (*d*) TMSCH₂CH=CH₂, BF₃·OEt₂, TMSOTf (0.2 equiv.), 4 Å mol. sieves, MeCN, -30 to -18°C, 1.5 h; (*e*) K_2CO_3 , MeOH, 20°C, 30 min; (*f*) PivCl, py, DMAP, CH_2Cl_2 , 0 to 20°C, 16 h; (*g*) OsO₄ (cat.), NMO, Me₂CO/H₂O; (*h*) Pb(OAc)₄, Na₂CO₃, CH₂Cl₂, 0 to 20°C, 30 min; (*i*) LiCl, DBU, (MeO)₂P(O)CH₂COMe, MeCN/CH₂Cl₂, 20°C, 3 h; (*j*) TESOTf, Et₃N, Et₂O, 0 to 20°C; (*k*) Dess–Martin periodinane, CH₂Cl₂, 20°C, 1 h; (*l*) MePPh₃+Br⁻, PhLi, 2 h, THF, 0 to 20°C, 1.5 h.

In order to examine the scope of this HDA methodology in more complex situations, the more elaborate 2-silvloxydienes 22 and 23, containing the C_5-C_9 transtetrahydropyran ring of the phorboxazoles, were prepared as shown in Scheme 4. This sequence commenced with an enantioselective Evans aldol reaction performed between aldehyde 24 and dienolate 25 catalysed by $[(R,R)Cu(Ph-pybox)](SbF_6)_2$.¹⁵ Base-mediated cyclisation of the resulting aldol adduct **26** (>97% ee) formed the keto lactone 27, which was converted by DIBAL reduction and in situ acylation with acetic anhydride,¹⁶ in the presence of pyridine and DMAP, into the bis-acetate 28. Optimal selectivity for the (7S)epimer 28 was obtained by performing the reduction step at -50°C. Anomeric alkylation¹⁷ of 28 by allyltrimethylsilane proceeded cleanly to give the key intermediate 29 with high diastereoselectivity (>97:3 dr). From tetrahydropyran 29, the 2-silyloxydiene 22 containing a pivalate substituent at C₇ was then accessed in seven steps and 71% yield, whilst diene 23 containing an exo-methylene was obtained in the same number of steps and 50% yield via aldehyde 30. In both cases, the HWE homologation steps and silvl enol ether formation (TESOTf, Et_3N) from the resulting (*E*)enones proceeded smoothly.

Having prepared the 2-silyloxydienes 22 and 23, we initially examined their HDA reactions with the simpler oxazole aldehyde 15 (Scheme 5). In the presence of the tridentate Cr(III) catalyst 14, the C_7 -OPiv substituted diene 22 underwent HDA reaction with 15 in acetone to provide a 3.2:1 mixture of the diastereomeric endocycloadducts 31 and 32 in 42% combined yield (95% based on consumed 22). These intermediates were hydrolysed to the corresponding ketones 33 and 34, which were separable by chromatography. In comparison, the corresponding HDA reaction performed with the C_7 -methylene substituted diene 23 proceeded with a lower level of stereocontrol, resulting in a 1.5:1 mixture of the diastereomeric cis-tetrahydropyrans 35 and 36 after hydrolysis, in favour of the desired adduct 35, where these were distinguished by NOE analysis as indicated.

This same HDA coupling protocol was then examined with the more complex oxazole aldehyde **4**, which now incorporates the full C_{15} - C_{32} sequence of the phorboxazoles (Scheme 6). Using the same batch of Jacobsen catalyst **14** and the conditions employed in the formation of **35**, the HDA reaction with 2-silyloxydiene **23** provided the intermediate *endo*-cycloadducts in 44%

Scheme 5. Reagents and conditions: (a) Catalyst 14 (17 mol%), 4 Å mol. sieves, 15, Me₂CO, 3 h; then diene 22 or 23, 38 h; (b) AcOH (2 equiv.), TBAF (1.5 equiv.), THF, 20°C, 1.5 h. # Yield based on recovered 22 and the corresponding enone hydrolysis product. [§]Yield based on recovered 23.

Scheme 6. Reagents and conditions: (a) Catalyst 14 (17 mol%), 4 Å mol. sieves, 4, Me₂CO, 3 h; then diene 23, 38 h; (b) AcOH (2 equiv.), TBAF (1.5 equiv.), THF, 20°C, 1.5 h. # Yield based on recovered 23.

yield (90% based on consumed 23) with moderate selectivity, along with recovered diene 23 and aldehyde 4. These silyl enol ethers were hydrolysed and separated by HPLC to give the individually characterised¹⁸ diastereomeric ketones 3 and 37, in a ratio of 1.5:1, where the major product 3 corresponds to the full pentacyclic C_4 - C_{32} segment of the phorboxazoles.

In summary, we have demonstrated that the Jacobsen HDA reaction can be applied with some success to the coupling of complex, highly functionalised substrates, in the context of a convergent approach to assembling the phorboxazole ring system. Studies are underway to address the stereochemical variability in these transformations, by further examining the influence of substrate structure and catalyst loading, in order to use this asymmetric HDA protocol as a key coupling step in the total synthesis of phorboxazole A.¹⁹

Acknowledgements

We thank the EPSRC, Merck Sharp and Dohme, the Isaac Newton Trust and Clare College, Cambridge, for support, and Mr. Alan Steven for experimental assistance.

References

- (a) Searle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995, 117, 8126; (b) Searle, P. A.; Molinski, T. F.; Brzezinski, L. J.; Leahy, J. W. J. Am. Chem. Soc. 1996, 118, 9422; (c) Molinski, T. F. Tetrahedron Lett. 1996, 37, 7879.
- (a) Forsyth, C. J.; Ahmed, F.; Cink, R. D.; Lee, C. S. J. Am. Chem. Soc. 1998, 120, 5597; (b) Ahmed, F.; Forsyth, C. J. Tetrahedron Lett. 1998, 39, 183; (c) Cink, R. D.; Forsyth, C. J. J. Org. Chem. 1997, 62, 5672; (d) Lee, C. S.; Forsyth, C. J. Tetrahedron Lett. 1996, 37, 6449.

- (a) Evans, D. A.; Fitch, D. M.; Smith, T. E.; Cee, V. J. J. Am. Chem. Soc. 2000, 122, 10033; (b) Evans, D. A.; Cee, V. J.; Smith, T. E.; Fitch, D. M.; Cho, P. S. Angew. Chem., Int. Ed. Engl. 2000, 39, 2533.
- (a) Smith, A. B., III; Minbiole, K. P.; Verhoest, P. R.; Schelhaas, M. J. Am. Chem. Soc. 2001, 123, 10942; (b) Smith, A. B., III; Verhoest, P. R.; Minbiole, K. P.; Lim, J. J. Org. Lett. 1999, 1, 909; (c) Smith, A. B., III; Minbiole, K. P.; Verhoest, P. R.; Beauchamp, T. J. Org. Lett. 1999, 1, 913.
- 5. (a) Williams, D. R.; Clark, M. P. Tetrahedron Lett. 1999, 40, 2291; (b) Williams, D. R.; Clark, M. P.; Berliner, M. A. Tetrahedron Lett. 1999, 40, 2287; (c) Williams, D. R.; Clark, M. P.; Emde, U.; Berliner, M. A. Org. Lett. 2000, 2, 3023; (d) Rychnovsky, S. D.; Thomas, C. R. Org. Lett. 2000, 2, 1217; (e) Schaus, J. V.; Panek, J. S. Org. Lett. 2000, 2, 469; (f) Huang, H.; Panek, J. S. Org. Lett. 2001, 3, 1693; (g) Wolbers, P.; Hoffmann, H. M. R. Tetrahedron 1999, 55, 1905; (h) Wolbers, P.; Misske, A. M.; Hoffmann, H. M. R. Tetrahedron Lett. 1999, 40, 4527; (i) Ye, T.; Pattenden, G. Tetrahedron Lett. 1998, 39, 319; (j) Pattenden, G.; Plowright, A. T.; Tornos, J. A.; Ye, T. Tetrahedron Lett. 1998, 39, 6099; (k) Pattenden, G.; Plowright, A. T. Tetrahedron Lett. 2000, 41, 983; (1) Greer, P. B.; Donaldson, W. A. Tetrahedron 2002, 58, 6009; (m) White, J. D.; Kranemann, C. L.; Kuntiyong, P. Org. Lett. 2001, 3, 4003.
- 6. Paterson, I.; Arnott, E. A. Tetrahedron Lett. 1998, 39, 7185.
- (a) Paterson, I.; Goodman, J. M.; Isaka, M. *Tetrahedron Lett.* **1989**, *30*, 7121; (b) Paterson, I.; Norcross, R. D.; Ward, R. A.; Romea, P.; Lister, M. A. *J. Am. Chem. Soc.* **1994**, *116*, 11287; (c) Paterson, I.; Nowak, T. *Tetrahedron Lett.* **1996**, *37*, 8243; (d) for a review of boron-mediated aldol reactions, see: Cowden, C. J.; Paterson, I. Org. React. **1997**, *51*, 1.
- Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447.
- (a) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. *Tetrahedron Lett.* **1984**, *25*, 2183; (b) Nuzillard, J.-M.; Boumendjel, A.; Massiot, G. *Tetrahedron Lett.* **1989**, *30*, 3779.

- 11 was generated from the corresponding methyl oxazole by deprotonation with lithium diethylamide (-78°C, THF) then quenching with TMSCI: Evans, D. A.; Cee, V. J.; Smith, T. E.; Santiago, K. J. Org. Lett. 1999, 1, 87.
- 11. De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. J. Org. Chem. **1997**, 62, 6974.
- 12. Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N. Angew. Chem., Int. Ed. Engl. 1999, 38, 2398.
- Mikami, K.; Matsumoto, S.; Ishida, A.; Takamuku, S.; Suenobu, T.; Fukuzumi, S. J. Am. Chem. Soc. 1995, 117, 11134.
- 14. The absolute configuration was determined by Mosher ester derivatisation of the equatorial alcohol 19. This also enabled quantification of the enantiomeric excess, which was corroborated by chiral HPLC (Daicel AD column) analysis of 17 and comparison with *ent*-17 made using the enantiomeric Jacobsen catalyst.
- Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell, B. T.; Staples, R. J. J. Am. Chem. Soc. 1999, 121, 669.
- Dahanukar, V. H.; Rychnovsky, S. D. J. Org. Chem. 1996, 61, 8317.
- Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976.
- All new compounds gave spectroscopic data in agreement with the structures indicated and stereochemical proof was obtained via Mosher ester and NOE analysis where applicable. Compound **3** was isolated after HPLC purification as an oil: [α]²⁰_D = +27.7 (*c* 0.13, CHCl₃); IR (CHCl₃ solution) 2985 (w), 2957 (m), 2928 (m), 2854 (m), 1717 (s, C=O), 1660 (w), 1600 (m), 1586 (w), 1492 (w), 1467 (w),

1455 (m), 1430 (w), 1376 (m), 1362 (m), 1347 (w), 1316 (w), 1256 (m); ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.49 (1H, s, H₃₀), 7.47 (1H, s, H₁₇), 7.35-7.26 (5H, m, PhH), 6.67 (1H, ddd, J=15.7, 8.1, 6.6 Hz, H₂₀), 6.32 (1H, d, J=16.0 Hz, H₁₉), 6.18 (1H, s, H₂₈), 4.77 (1H, br s, H_{51a}), 4.74 (1H, br s, H_{51b}), 4.61 (1H, dd, J=11.7, 2.4 Hz, H₁₅), 4.54 (2H, ABq, J=12.1 Hz, $\delta_a=4.58$, $\delta_b=4.50$, PhCH₂O), 4.02 (1H, app sextet, J=4.7 Hz, H₉), 3.96 (1H, m, H₅), 3.92 (1H, m, H₁₁), 3.54–3.51 (2H, m, H_{4a} and H₂₂), 3.45–3.40 (3H, m, H_{4b} , H_{24} and H_{26}), 2.75 (1H, dd, $J = 14.5, 11.9 \text{ Hz}, \text{H}_{14a}$), 2.60–2.57 (3H, m, H_{14b}, H_{21a} and H_{12a}), 2.44 (3H, s, Me₃₂), 2.42–2.38 (2H, m, H_{12b} and H_{8a}), 2.32-2.28 (2H, m, H_{6a} and H_{21b}), 2.23 (1H, ddd, J=14.5, 9.2, 5.4 Hz, H_{10a}), 2.12 (1H, dd, J=13.2, 7.5 Hz, H_{6b}), 2.02 (1H, dd, J=13.6, 5.4 Hz, H_{8b}), 1.91 (3H, s, Me₄₈), 1.78 (1H, m, H₂₃), 1.73 (1H, m, H₂₅), 1.63 (1H, obsc m, H_{10b}), 0.98 (3H, d, J=6.8 Hz, Me₅₀), 0.91 (9H, s, SiC(CH₃)₃), 0.75 (3H, d, J=6.5 Hz, Me₄₉), 0.06 (3H, s, SiCH₃), 0.05 (3H, s, SiCH₃); ¹³C NMR (100.6 MHz, CDCl₃) $\delta_{\rm C}$ 206.0, 161.5, 160.6, 141.2, 140.9, 138.2, 138.1, 137.8, 137.1, 135.5, 134.4, 128.4, 127.6, 127.5, 118.6, 118.0, 110.9, 88.8, 77.7, 77.2, 74.3, 73.3, 71.8, 71.2, 70.8, 68.9, 47.0, 46.3, 39.3, 39.2, 38.9, 36.5, 36.4, 34.8, 25.8, 18.1, 14.3, 13.9, 13.8, 5.9, -4.1, -4.8; HRMS (+ESI) calcd for C₄₆H₆₄N₂O₈SiNa (MNa⁺) 823.4330 found 823.4324.

 After submission of this manuscript the Pattenden and Williams groups disclosed their completed total syntheses of phorboxazole A, see: González, M. A.; Pattenden, G. *Angew. Chem., Int. Ed.* 2003, 42, 1255. Williams, D. R.; Kiryanov, A. A.; Emde, U.; Clark, M. P.; Berliner, M. A.; Reeves, J. T. *Angew. Chem., Int. Ed.* 2003, 42, 1258.