Enantiospecific First Total Synthesis of ent-Allothapsenol

A. Srikrishna,* K. Mahesh

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India Fax +91(80)3600683; E-Mail: askiisc@gmail.com *Received: 15.01.2012; Accepted after revision: 14.02.2012* Dedicated to Professor A. J. Rao on the occasion of his 70th birthday

Abstract: The enantiospecific first total synthesis of the enantiomer of the irregular sesquiterpene from *Ligusticumgrayi* allothapsenol, starting from the readily available monoterpene (R)-carvone, is described, which confirmed the assumed absolute configuration of the natural product.

Key words: allothapsane, enantiospecific synthesis, irregular sesquiterpenes, carvone

Allothapsenol (1) is one of the 17 irregular sesquiterpenes recently isolated¹ by Cool and co-workers from the root oil of *Ligusticumgrayi*, which belongs to the Apiaceae family and grows in Cascade mountains of California, Nevada, Oregon, and Washington. The Apiaceae family is known to be a rich source of novel natural products, particularly, several sesqui- and diterpenoids containing irregular carbon frameworks. The roots of the plant *Ligusticumgrayi* were used by native Americans for medicinal purposes. The structure of allothapsenol (1, Figure 1) was assigned on the basis of spectroscopic data, in particular the 1D and 2D NMR, and the absolute configuration was tentatively assigned in analogy to that of thapsanes, such as **2**, isolated from *Thapsia villosa*.²

The sterically crowded framework containing three contiguous all-carbon quaternary centers made the allothapsanes attractive synthetic targets. So far there is no report in the literature on the synthesis, either in racemic or enantiopure form, of any allothapsane. In continuation of our interest in the chiral-pool-based enantiospecific synthesis of natural products starting from the readily available monoterpenes,³ we have initiated the synthesis of the irregular *Ligusticumgrayi* sesquiterpenes, and herein we report the enantiospecific first total synthesis of the enantiomer of allothapsenol (1), which also confirmed the absolute configuration of the natural allothapsenol.

SYNLETT 2012, 23, 1021–1024 Advanced online publication: 29.03.2012 DOI: 10.1055/s-0031-1290527; Art ID: ST-2012-D0038-L © Georg Thieme Verlag Stuttgart · New York It was contemplated (Scheme 1) that the synthesis of allothapsenol (1) could be accomplished via the hydrindanedione (3). The tricyclic ketone 4 containing two vicinal allcarbon quaternary carbon atoms, a key intermediate used in the synthesis of valerane sesquiterpenes,⁴ was considered as the ideal precursor for the synthesis of 3, via degradation of the isopropenyl group followed by cyclopropane ring cleavage. The ketone 4 could readily be prepared from the monoterpene carvone (5) via 3-methylcarvone (6) and the γ , δ -unsaturated acid 7.

Scheme 1

The synthetic sequence starting from (R)-carvone (5) is depicted in Scheme 2 and Scheme 3. To begin with (R)carvone (5) has been transformed into (S)-3-methylcarvone (6) via an alkylative 1.3-enone transposition strategy,⁵ which was then transformed into the γ , δ -unsaturated acid 7 via Johnson's orthoester Claisen rearrangement of the alcohol 8. The requisite key intermediate of the sequence, the tricyclic ketone 4 was regio- and stereospecifically obtained from the acid 7 via the anhydrous copper sulfate catalysed intramolecular cyclopropanation of the diazo ketone 9. The third quaternary carbon atom was created by a one-step dialkylation of the tricyclic ketone 4 with sodium hydride and methyl iodide in THF to furnish the alkylated ketone 10 in 78% yield, whose structure was established from its spectral data.⁶ Next, degradation of the isopropenyl into a ketone group was addressed by employing a one-step ozonation-Criegee rearrangement.⁷ Thus, ozonation of the tricyclic ketone 10 in dichloromethane-methanol (4:1) at low temperature, followed by treatment of the resultant methoxy hydroperoxide with acetic anhydride and triethylamine in refluxing benzene furnished the tricyclic keto acetate 11 in 43% yield.⁸ Hydrolysis of the acetate with potassium carbonate in methanol transformed the tricyclic keto acetate 11 into the hydroxy ketone 12 in 86% yield, which was found to exist (>85%) as the hemiacetal 12a. Oxidation of the hydroxy group in 12 with pyridinium chlorochromate (PCC) and silica gel in dichloromethane at room temperature, followed by treatment with *p*-toluenesulfonic acid (PTSA) furnished the bicyclic enedione 3 in 86% yield, via cleavage of the cyclopropane ring (or uncaging) in the resultant tricyclic dione 13, whose structure was established from its spectral data in particular the IR, ¹H NMR, and ¹³C NMR.⁶

To avoid regiochemical problems in subsequent reactions (Scheme 3), the cyclopentanone in the enedione 3 was protected as its ethylene ketal by treating with 1.2 equivalents of ethanediol in the presence of a catalytic amount of 4-toluenesulfonic acid (PTSA) in refluxing benzene under Dean-Stark conditions to furnish the keto ketal 14 in 76% yield, in a regioselective manner. Kinetic alkylation of the enone 14 with lithium hexamethyldisilazide (LiHMDS) and methyl iodide furnished the norallothapsane derivative 15 in 68% yield, in a highly stereoselective manner as it is both kinetic and thermodynamically preferred. The stereochemistry of the secondary methyl group was assigned on the basis of the approach of the electrophile from the less hindered face of the bicyclic system as one face is blocked by the methyl group on the C-9 carbon atom of the bicyclic system.

Hydrogenation of the enone 15 in ethyl acetate using 10% palladium over carbon as the catalyst at one atmospheric pressure of hydrogen furnished the saturated ketone 16 in near quantitative yield. Reduction of the ketone 16 with lithium aluminum hydride (LAH) in diethyl ether generated the secondary alcohol 17 in 82% yield, in a highly stereoselective manner. The stereochemistry of the alcohol in 17 was assigned based on the ¹H NMR spectrum (broad singlet due to CHOH established the axial orientation of the hydroxy group), and was confirmed by its facile dehydration as it is axial orientated and hence nicely suited for a facile E_2 elimination. It was contemplated to dehydrate the secondary alcohol in 17 via elimination of the corresponding mesylate. Treatment of the alcohol 17 with methanesulfonyl chloride and pyridine followed by workup directly furnished the norallothapsenone 18 in 70% yield, in a highly regioselective manner via formation as well as elimination of the mesylate and hydrolysis of the ketal moiety. Since the conventional Wittig reaction of the ketone **18** was found to be inefficient, Yan's protocol⁹ was employed. Thus, treatment of the norketone 18 with magnesium, dichloromethane, and titanium tetrachloride in THF furnished allothapsa-2,8(12)-diene (19) in 71% yield, whose structure was established from its ¹H NMR and ¹³C NMR spectral data.⁶

Since regioselective hydroboration of the *exo*-methylene in the diene **19** under a variety of conditions was found to be inefficient, and also bulky dialkylboranes are expected to generate the *endo*-hydroxymethyl group leading to epiallothapsenol (**20**), the sequence was modified, and it was considered that the primary hydroxy group may be intro-

Scheme 2 Reagents and conditions: (a)⁴ i. MeMgI, Et₂O; ii. PCC, silica gel, CH₂Cl₂; iii. LAH, Et₂O; (b)⁴ i. MeC(OEt)₃, EtCOOH, temp; ii. NaOH, MeOH, H₂O; iii. (COCl)₂, C₆H₆; iv. CH₂N₂, Et₂O; (c)⁴ anhyd CuSO₄, *c*-C₆H₁₂; (d) NaH, THF, MeI, r.t., 18 h, 78%; (e) i. O₃/O₂, CH₂Cl₂–MeOH (4:1), NaHCO₃; -70 °C; ii. Ac₂O, Et₃N, DMAP, C₆H₆, reflux, 6 h; 43%; (f) K₂CO₃, MeOH, r.t., 6 h, 86%; (g) i. PCC, silica gel, CH₂Cl₂, r.t., 8 h; PTSA, CH₂Cl₂, 1 h; 86%.

duced prior to the generation of the trisubstituted olefin. Thus, hydrolysis of the ketal group in 17 generated the hydroxy ketone 21. Treatment of the hydroxy ketone 21 with magnesium, dichloromethane, and titanium tetrachloride furnished allothaps-8(12)-en-3-ol (22) in 58% yield. Reaction of allothapsenol 22 with an excess of in situ generated borane-THF followed by oxidation with alkaline hydrogen peroxide, as expected, furnished a 5:2 mixture of the exo-23a and endo-23b diols in 74% yield, which were separated by column chromatography on silica gel. The stereochemistry of the hydroxymethyl group in 23a and 23b were tentatively assigned and was confirmed by the conversion of the major isomer into ent-allothapsenol (1). In order to avoid a regiochemical problem, the primary alcohol in 23a was protected as its TBDMS ether by treating with one equivalent of *tert*-butyldimethylsilyl chloride and imidazole in the presence of a catalytic amount of 4-N,N-dimethylpyridine (DMAP) to furnish the ether 24a. Dehydration of the secondary alcohol in 24a was effected by reacting with methanesulfonyl chloride and pyridine to furnish allothapsenyl TBDMS ether 25a, which on deprotection with tetrabutylammonium fluoride (TBAF) generated *ent*-allothapsenol (1). In a similar manner, the minor diol 24b was transformed into epiallothapsenol 20. Structures of *ent*-1 and 20 were assigned on the basis of the spectral data. Synthetic *ent*-allothapsenol (1) exhibited ¹H NMR and ¹³C NMR spectral

Scheme 3 Reagents and conditions: (a) $(CH_2OH)_2$, PTSA, C_6H_6 , reflux (Dean–Stark), 6 h, 76%; (b) LiHMDS, THF, -70 °C; MeI, r.t., 8 h, 68%; (c) H₂ (1 atm), 10% Pd/C, EtOAc, 1 h, 98%; (d) LAH, Et₂O, 0 °C to r.t., 1 h, 82%; (e) MsCl, pyridine, CH_2Cl_2 , 0 °C, 1 h, 70%; (f) Mg, CH_2Cl_2 , TiCl₄, THF, r.t., 1 h, 71%; (g) 3 M HCl, THF, r.t., 1 h, 81%; (h) Mg, CH_2Cl_2 , TiCl₄, THF, r.t., 1 h, 58%; (i) i. NaBH₄, BF₃?OEt₂, THF, 0 °C to r.t., 1 h; ii. 3 N NaOH, 30% H₂O₂, r.t., 1 h; 74%; (j) TBDMSCl, imidazole, DMAP, CH_2Cl_2 , **24a** 82%; **24b** 87%; (k) i. MsCl, pyridine, CH_2Cl_2 , 0 °C, 1 h; ii. TBAF, THF, r.t., 3 h, 75%.

data⁶ in C_6D_6 identical to that of natural allothapsenol (1), whereas the sign of the optical rotation was found to be opposite to that natural product, confirming the assigned absolute configuration of the natural product.

In conclusion, we have developed the enantiospecific first total synthesis of the enantiomers of allothapsa-2,8(12)-diene (19) and allothapsenol (1), starting from the readily available monoterpene (*R*)-carvone. A combination of the Criegee rearrangement and the regiospecific cyclopropane ring cleavage were conveniently employed for the generation of the key intermediate of the sequence.

Acknowledgment

We thank Dr. L. G. Cool for providing the copies of the ¹H NMR and ¹³C NMR spectra of natural allothapsenol, and the Department of Science and Technology, New Delhi and Department of Biotechnology, New Delhi for the financial support.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

References

- Cool, L. G.; Vermillion, K. E.; Takeoka, G. R.; Wong, R. Y. Phytochemistry 2010, 71, 1545.
- (2) (a) de Pascual Teresa, J.; Moran, J. R.; Grande, M. *Chem. Lett.* **1985**, 865. (b) de Pascual Teresa, J.; Moran, J. R.; Fernandez, A.; Grande, M. *Phytochemistry* **1986**, 25, 703.
 (c) Srikrishna, A.; Anebouselvy, K. *Tetrahedron Lett.* **2002**, 43, 5261.
- (3) For recent examples, see: (a) Srikrishna, A.; Nagaraju, G. Synlett 2012, 23, 123. (b) Srikrishna, A.; Gowri, V. Synlett 2011, 2652. (c) Srikrishna, A.; Mahesh, K. Synlett 2011, 2537. (d) Srikrishna, A.; Dethe, D. H. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2011, 50, 1092. (e) Srikrishna, A.; Anebouselvy, K. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2010, 49, 771. (f) Srikrishna, A.; Pardeshi, V. H.; Mahesh, K. Tetrahedron: Asymmetry 2010, 21, 2511. (g) Srikrishna, A.; Pardeshi, V. H.; Satyanarayana, G. Tetrahedron: Asymmetry 2010, 21, 746. (h) Srikrishna, A.; Ravi, G.; Venkatasubbaiah, D. R. C. Synlett 2009, 32. (i) Srikrishna, A.; Ravi, G. Tetrahedron 2008, 64, 2565.
- (4) Srikrishna, A.; Viswajanani, R.; Dinesh, C. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2004, 42, 1265.
- (5) (a) Buchi, G.; Egger, B. J. Org. Chem. 1971, 36, 2021.
 (b) Srikrishna, A.; Hemamalini, P. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1990, 29, 152.
- (6) Yields refer to isolated and chromatographically pure compounds. All the compounds exhibited spectral data [IR, HRMS, ¹H NMR (400 MHz) and ¹³C NMR (100 MHz)] consistent with their structures.
 Selected Spectral Data for (1*R*,2*R*,4*R*,6*R*,9*S*)-4-Isopropenyl-1,6,7,7-tetramethyltricyclo[4.3.0.0^{2,9}]-nonan-8-one (10): [α]_D²³ +116.9 (*c* 3.7, CHCl₃). IR (neat): v_{max}= 1721 (C=O), 1381, 1017, 885 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 4.65 (1 H, s) and 4.58 (1 H, s) [C=CH₂], 2.10–1.95 (2 H, m), 1.87 (1 H, d, *J*= 10.1 Hz), 1.69 (3 H, s, olefinic CH₃), 1.75–1.25 (3 H, m), 1.28 (3 H, s), 1.17 (3 H, s), 1.06 (3 H, s) and 0.81 (3 H, s) [4 × t-CH₃], 0.68 (1 H, td, *J*= 14.0, 6.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ = 217.5 (C=O), 148.6 (C=CH₂), 108.9 (C=CH₂), 58.3 (C, C-7), 40.3 (C), 39.4 (CH), 38.5 (CH), 38.1 (CH₂), 30.1 (CH), 28.9 (C),

© Georg Thieme Verlag Stuttgart · New York

26.3 (CH₃), 24.7 (CH₂), 24.1 (CH₃), 21.3 (CH₃), 19.9 (CH₃), 18.6 (CH₃). HRMS: *m/z* calcd for C₁₆H₂₄O [M + Na]: 255.1725; found: 255.1726.

(1*R*,6*S*)-1,6,9,9-Tetramethylbicyclo[4.3.0]non-4-ene-3,8dione (3): $[\alpha]_D^{23}$ -35.5 (*c* 2.4, CHCl₃). IR (neat): $v_{max} = 1737$ (C=O), 1683 (C=O), 1458, 1390, 1379, 1267, 1117, 1087, 785 cm⁻¹. ¹H NMR (400 MHz, CDCl₃ + CCl₄): $\delta = 6.66$ (1 H, d, J = 10.1 Hz, H-5), 5.98 (1 H, d, J = 10.1 Hz, H-4), 2.63 (1 H, d, J = 19.2 Hz), 2.47 (1 H, d, J = 16.4 Hz), 2.46 (1 H, d, J = 19.2 Hz), 2.29 (1 H, d, J = 16.4 Hz), 1.34 (3 H, s), 1.10 (3 H, s), 1.06 (3 H, s), 1.01 (3 H, s) [4 × *t*-CH₃]. ¹³C NMR (100 MHz, CDCl₃ + CCl₄): $\delta = 219.9$ (C, C-8), 198.8 (C, C-3), 156.8 (CH, C-5), 126.5 (CH, C-4), 53.3 (C), 48.6 (CH₂), 47.8 (C), 45.0 (CH₂), 41.1 (C), 25.3 (CH₃), 22.8 (CH₃), 22.6 (CH₃), 19.5 (CH₃). HRMS: *m/z* calcd for C₁₃H₁₈O₂ [M + Na]: 229.1204; found: 229.1206.

(1*R*,2*R*,3*S*,6*R*)-3-Hydroxy-1,2,6,9,9-pentamethylbicyclo-[4.3.0]nonan-8-one (21): $[\alpha]_D^{22}$ -54.4 (*c* 4.0, CHCl₃). IR (neat): v_{max} = 3510 (OH), 1719 (C=O), 1381, 1246, 1227, 963 cm⁻¹. ¹H NMR (400 MHz, CDCl₃):

$$\begin{split} &\delta\!=\!3.84\,(1~\mathrm{H, br~s, CHOH}), 2.66\,(1~\mathrm{H, d}, J\!=\!17.6~\mathrm{Hz, H-7A}), \\ &1.95\,(1~\mathrm{H, ddd}, J\!=\!14.2, 9.3, 7.5~\mathrm{Hz}), 1.86\,(1~\mathrm{H, d}, J\!=\!17.6~\mathrm{Hz, H-7B}), 1.74\!-\!1.68\,(2~\mathrm{H, m}), 1.60\,(1~\mathrm{H, br~s}), 1.33\!-\!1.28~\mathrm{(1~H, m)}, 1.10\!-\!1.05\,(15~\mathrm{H, m}, 4\times\mathit{t-CH_3}~\mathrm{and}~\mathit{s-CH_3}). {}^{13}\mathrm{C} \\ &\mathrm{NMR}\,(100~\mathrm{MHz, CDCl_3}); \,\delta\!=\!224.4\,(\mathrm{C, C=O}), 72.0\,(\mathrm{CH, C-3}), 54.1\,(\mathrm{C}), 48.3\,(\mathrm{C}), 47.9\,(\mathrm{CH_2}), 40.1\,(\mathrm{C}), 38.1\,(\mathrm{CH}), 29.2~\mathrm{(CH_2)}, 28.4\,(\mathrm{CH_2}), 28.1\,(\mathrm{CH_3}), 26.1\,(\mathrm{CH_3}), 25.9\,(\mathrm{CH_3}), 15.9~\mathrm{(CH_3)}, 15.2\,(\mathrm{CH_3}).~\mathrm{HRMS}: \mathit{m/z}~\mathrm{calcd}~\mathrm{for}~\mathrm{C_{14}H_{24}O_2Na}\,[\mathrm{M}+\mathrm{Na}]; 247.1674;~\mathrm{found}: 247.1672. \end{split}$$

(1*R*,6*R*)-1,2,6,9,9-Pentamethyl-8-methylenebicyclo-[4.3.0]non-2-ene [Allothapsa-2,8(12)-diene (19)]: $[\alpha]_D^{22}$ -11.5 (*c* 1.1, CHCl₃). IR (neat): $v_{max} = 3069$, 1648, 1377, 1075, 879 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.40$ (1 H, br s, H-3), 4.84 (1 H, d, *J*= 2.2. Hz) and 4.79 (1 H, d, *J*= 2.3 Hz), 2.57 (1 H, dt, *J*= 15.6, 2.2 Hz) and 2.04 (1 H, d, *J*= 15.6 Hz) [H-7], 2.15–1.98 (1 H, m), 1.95–1.80 (1 H, m), 1.80– 1.65 (1 H, m), 1.66 (3 H, s, vinylic CH₃), 1.15–1.00 (1 H, m), 1.12 (3 H, s), 1.11 (3 H, s), 0.99 (3 H, s) and 0.90 (3 H, s) [4 × *t*-CH₃]. ¹³C NMR (100 MHz, CDCl₃): $\delta = 162.9$ (C, C-8), 137.1 (C, C-2), 121.7 (CH, C-3), 104.6 (CH₂, C=CH₂), 51.4 (C, C-1), 47.2 (CH₂), 46.7 (C), 41.2 (C), 32.3 (CH₂), 31.5 (CH₃), 30.3 (CH₃), 22.1 (2 C, CH₃ and CH₂), 21.5 (CH₃), 19.2 (CH₃). MS: m/z (%) = 204 (100) [M⁺], 189 (12), 166 (22), 135 (18), 121 (100).

(1*R*,6*R*,8*S*)-1,2,6,9,9-Pentamethylbicyclo[4.3.0]nona-2ene-8-methanol [8-Epiallothapsenol (20)]: $[\alpha]_D^{22} - 5.4$ (*c* 0.4, CHCl₃). IR (neat): $v_{max} = 3338$ (OH), 1545, 1377, 1083, 1067, 1018, 818, 669 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): $\delta = 5.46$ (1 H, br s, olefinic H), 3.51 (1 H, dd, *J* = 10.2, 5.8 Hz), 3.23 (1 H, dd, *J* = 10.2, 7.9 Hz), 2.13–1.76 (2 H, m), 1.74– 1.68 (2 H, m), 1.67 (3 H, s, vinylic CH₃), 1.33–1.30 (2 H, m), 1.23 (1 H, dd, *J* = 13.3, 9.8 Hz), 1.06 (3 H, s), 0.93 (3 H, s) 0.90 (3 H, s), 0.86 (3 H, s) [4 × *t*-CH₃]. ¹³C NMR (100 MHz, C₆D₆): $\delta = 138.7$ (C, C-2), 124.2 (CH, C-3), 64.9 (CH₂, CH₂OH), 53.6 (C), 49.2 (CH), 46.2 (C), 44.9 (CH₂), 42.0 (C), 38.9 (CH₂), 28.4 (CH₃), 25.9 (CH₃), 23.2 (CH₂), 22.7 (CH₃), 21.8 (CH₃), 20.4 (CH₃).

(*IR*,6*R*,8*R*)-1,2,6,9,9-Pentamethylbicyclo[4.3.0]nona-2ene-8-methanol [*ent*-Allothapsenol (*ent*-1)]: $[α]_D^{22}$ -28.5 (*c* 0.3, CHCl₃). IR (neat): v_{max} = 3342 (OH), 1376, 1074, 1017, 817 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ = 5.42 (1 H, br s, olefinic H), 3.45 (1 H, dd, *J* = 10.4, 7.0 Hz), 3.26 (1 H, dd, *J* = 10.3, 6.7 Hz), 2.10–1.75 (4 H, m), 1.61 (3 H, s, vinylic CH₃), 1.40 (1 H, br s), 1.35 (1 H, dd, *J* = 12.5, 5.3 Hz), 1.25 (1 H, t, *J* = 12.7 Hz), 1.12 (3 H, s), 0.96 (3 H, s), 0.86 (3 H, s), 0.85 (3 H, s) [4 × *t*-CH₃]. ¹³C NMR (100 MHz, C₆D₆): δ = 137.7 (C, C-2), 122.2 (CH, C-3), 64.6 (CH₂, CH₂OH), 52.5 (C), 50.7 (CH), 44.2 (C), 42.8 (CH₂), 42.5 (C), 33.6 (CH₃), 32.9 (CH₂), 23.5 (CH₃), 23.3 (CH₃), 22.7 (CH₂), 21.7 (CH₃), 20.1 (CH₃).

- (7) (a) Schreiber, S. L.; Liew, W.-F. Tetrahedron Lett. 1983, 24, 2363. (b) Criegee, R. Ber. Bunsen-Ges. Phys. Chem. 1944, 77, 722.
- (8) In addition to the acetate **11**, ca. 10% of the ene-dione **3** was also obtained.
- (9) Yan, T.-H.; Tsai, C.-C.; Chen, C.-T.; Cho, C.-C.; Huang, P.-C. Org. Lett. 2004, 6, 4961.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.