Supporting Information

for

Gold(III) Porphyrin-Catalyzed Cycloisomerization of Allenones

Cong-Ying Zhou, Philip Wai Hong Chan and Chi-Ming Che*

Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong

General Experimental Section: Reagents were obtained commercially and used without further purification unless indicated otherwise. The gold(III) porphyrin catalysts and allenone starting materials **1** were prepared following literature procedures.^{S1, S2} Solvent was removed under reduced pressure and the residue obtained was chromatographed on a silica gel column (230-400 mesh) using a gradient solvent system (EtOAc: *n*-hexane as eluant unless specified otherwise). ¹H and ¹³C NMR spectra were measured on either a Bruker DPX-400 or DPX-300 spectrometer. Chemical shifts (δ ppm) were determined with tetramethylsilane (TMS) as internal reference. Mass spectra were determined on a Finnigan MAT 95 mass spectrometer. IR spectra were recorded on Bio-RAD PTS-165 spectrometer.

General Procedure for Gold(III) Porphyrin-catalyzed Cycloisomerization of Allenones 1 to Furans 2

To a acetone solution (3 mL) containing allenone **1** (0.5 mmol) was added gold(III) porphyrin (5 μ mol) and Brønsted acid (0.05 mmol) and the resultant mixture was stirred at 60°C for 30 mins. The solvent was removed and the crude residue was purified by silica gel column chromatography to give the furan product **2**. The same procedure was used for reactions with other Au(III) or Ag(I) catalysts.

	O catalyst				Ph	
	Ph	acid, solvent	Ph O + Ph	O Me O		
	1a		2a	3a		
entry	acid	catalyst	solvent	time (h)	yield $(\%)^{b, c}$	
1	TFA	[Au(TPP)]Cl ^d	acetone	0.5	88 ^e	
2	TFA	$[Au(F_{20}-TPP)]Cl^{f}$	acetone	0.25	78	
3	TFA	[Au(TPP)]Cl	EtOH	0.5	87	
4	TFA	[Au(TPP)]Cl	1,2-dichloroethane	1	79	
5	TFA	[Au(TPP)]Cl	DMF	0.5	78	
6	TFA	[Au(TPP)]Cl	DMSO	0.5	81	
7	TFA	[Au(TPP)]Cl	CH ₃ CN	1	82	
8	TFA	[Au(TPP)]Cl	C_6H_6	2	28	
9	TFA	[Au(TPP)]Cl	EtOAc	2	17	
10 ^{<i>g</i>}	TFA	[Au(TPP)]Cl	acetone	2	28^h	
11	TsOH	[Au(TPP)]Cl	acetone	0.5	87	
12	CH ₃ CO ₂ H	[Au(TPP)]Cl	acetone	1	29	
13	-	[Au(TPP)]Cl	acetone	2	_i	
14	-	[Au(TPP)]OTf	acetone	2	_i	
15	TFA	AuCl ₃	acetone	0.5	49 ^{<i>i</i>}	
16	TFA	AuPPh ₃ Cl	acetone	0.5	48^k	
17	TFA	[Au(salen)]Cl ^l	acetone	0.5	38 ^{<i>m</i>}	
18 ⁿ	TFA	AgNO ₃	acetone	0.5	10^{o}	

Table S1. Optimization of Reaction Conditions^a

^{*a*}Reactions were performed with 1 mol% catalyst at 60°C. ^{*b*1}H NMR yield. ^{*c*}All substrate conversions were quantitative based on ¹H NMR analysis. ^{*d*}H₂(TPP) = *meso*-tetraphenylporphyrin. ^{*e*}Isolated yield. ^{*f*}H₂(F₂₀-TPP) = *meso*-tetrakis(pentafluorophenyl)porphyrin. ^{*g*}Reaction conducted at room temperature. ^{*h*}31% substrate conversion as determined by ¹H NMR analysis. ^{*i*}No reaction. ^{*j*}The dimer **3a** was also isolated in 16% yield. ^{*k*}58% substrate conversion based on ¹H NMR analysis. ^{*i*}H₂(salen) = *N*,*N*²-bis(salicylidene)ethylenediamine. ^{*m*}47% substrate conversion based on ¹H NMR analysis. ^{*i*}Conducted with 2 mol% AgNO₃ catalyst. ^{*o*}21% substrate conversion based on ¹H NMR analysis. The dimer **3a** was also isolated in 2% yield.

2-Phenyl-furan 2a.^{S3} Yield 88%; ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, 2H, J = 7.9 Hz), 7.46 (d, 1H, J = 1.8 Hz), 7.37 (t, 2H, J = 7.9 Hz), 7.22-7.27 (m, 1H), 6.64 (d, 1H, J = 3.4 Hz), 6.46 (dd, 1H, J = 3.4, 1.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 153.9, 142.0, 130.9, 128.6, 127.3, 123.8, 111.6, 104.9; MS (EI) m/z 144 [M⁺]; HRMS (EI) calcd. for C₁₀H₈O 144.0575, found 144.0572.

2-p-Tolyl-furan 2b. Yield 84%; ¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, 2H, J = 8.2 Hz), 7.41 (d, 1H, J = 1.8 Hz), 7.14 (d, 2H, J = 8.2 Hz), 6.55 (d, 1H, J = 3.3Hz), 6.42 (dd, 1H, J = 3.3, 1.8 Hz), 2.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 154.2, 141.6, 137.1, 129.3, 128.2, 123.7, 111.5, 104.2, 21.2; IR (neat, cm⁻¹) 3292, 1633, 1435, 1340, 1287, 1131, 1096, 1058, 642; MS (EI) m/z 158 [M⁺]; HRMS (EI) calcd. for C₁₁H₁₀O 158.0731, found 158.0726.

2-(4-Methoxy-phenyl)-furan 2c.^{S3} Yield 81%; ¹H NMR (300 MHz, CDCl₃) δ 7.59 (d, 2H, J = 8.9Hz), 7.41 (d, 1H, J = 1.6 Hz), 6.90 (d, 2H, J = 8.9Hz), 6.50 (d, 1H, J = 3.3Hz), 6.43 (dd, 1H, J = 3.3, 1.6 Hz), 3.81(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 158.9, 153.9, 141.3, 125.2, 123.9, 114.1, 114.5, 103.3, 55.2; MS (EI) m/z 174 [M⁺]; HRMS (EI) calcd. for C₁₁H₁₀O₂ 174.0681, found 174.0685.

2-(4-Bromo-phenyl)-furan 2d.^{S4} Yield 85%; ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.51 (m, 5H), 6.63 (d, 1H, J = 3.4Hz), 6.45 (dd, 1H, J = 3.4, 1.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 142.3, 131.8, 129.7, 125.3, 121.0, 111.8, 105.5; MS (EI) m/z 222 [M⁺]; HRMS (EI) calcd. for C₁₀H₇BrO 221.9680, found 221.9679.

2-(3-Bromo-phenyl)-furan 2e.^{S3} Yield 87%; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (s, 1H), 7.57 (d, 1H, J = 7.8 Hz), 7.46 (t, 1H, J = 0.9 Hz), 7.38 (dt, 1H, J = 7.8, 0.9 Hz), 7.23 (t, 1H, J = 7.8Hz), 6.66 (d, 1H, J = 3.4Hz), 6.46-6.48 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 152.8, 142.5, 132.7, 130.2, 130.1, 126.7, 122.8, 122.2, 111.8, 106.1; MS (EI) m/z 222 [M⁺]; HRMS (EI) calcd. for C₁₀H₇OBr 221.9680, found 221.9682. **2-(2-Bromo-phenyl)-furan 2f.**^{S5} Yield 98%; ¹H NMR (300 MHz, CDCl₃) δ 7.78 (dd, 1H, J = 7.9, 1.6 Hz), 7.64 (dd, 1H, J = 7.9, 1.0 Hz), 7.51(dd, 1H, J = 1.8, 0.7 Hz), 7.35 (dt, 1H, J = 7.4, 1.2 Hz), 7.08-7.17 (m, 2H), 6.51 (dd, 1H, J = 3.5, 1.8Hz); ¹³C NMR (75 MHz, CDCl₃) δ 151.3, 112.2, 134.1, 131.2, 128.8, 128.3, 127.3, 119.6, 111.3, 110.5; MS (EI) *m/z* 222 [M⁺]; HRMS (EI) calcd. for C₁₀H₇OBr 221.9680, found 221.9683.

2-(4-Chloro-phenyl)-furan 2g.^{S3} Yield 86%; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, 2H, J = 8.7 Hz), 7.44 (d, 1H, J = 1.7 Hz), 7.34(d, 2H, J = 8.7 Hz), 6.61 (d, 1H, J = 3.4 Hz), 6.45 (dd, 1H, J = 3.4, 1.7Hz); ¹³C NMR (75 MHz, CDCl₃) δ 152.9, 142.2, 132.9, 129.3, 128.8, 124.9, 111.7, 105.4; MS (EI) m/z 178 [M⁺]; HRMS (EI) calcd. for C₁₀H₇OCl 178.0185, found 178.0187.

4-Furan-2-yl-benzoic acid methyl ester 2h.^{S3} Yield 92%; ¹H NMR (300 MHz, CDCl₃) δ 8.03(d, 2H, J = 8.4Hz), 7.72(d, 2H, J = 8.4Hz), 7.51(d, 1H, J = 1.7Hz), 6.78(d, 1H, J = 3.4Hz), 6.50(dd, 1H, J = 3.4, 1.7Hz), 3.92(s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.7, 152.8, 143.0, 134.7, 129.9, 128.4, 123.3, 111.9, 107.1, 51.9; MS (EI) m/z 171 [M⁺ – Me]; HRMS (EI) calcd. for C₁₁H₇O₂ 171.0446, found 171.0445.

2-(4-Nitro-phenyl)-furan 2i.^{S6} Yield 91%; ¹H NMR (300 MHz, CDCl₃) δ 8.25 (d, 2H, J = 8.9Hz), 7.79 (d, 2H, J = 8.9 Hz), 7.57 (d, 1H, J = 1.6 Hz), 6.88 (d, 1H, J = 3.4Hz), 6.55 (dd, 1H, J = 3.4, 1.6Hz); ¹³C NMR (75 MHz, CDCl₃) δ 151.6, 144.1, 136.4, 129.1, 124.3, 123.9, 112.4, 108.9; MS (EI) *m*/*z* 189 [M⁺]; HRMS (EI) calcd. for C₁₀H₇NO₃ 189.0426, found 189.0424.

2-Naphthalen-2-yl-furan 2j.^{S7} Yield 80%; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.75-7.86 (m, 4H), 7.52 (d, 1H, J = 1.7 Hz), 7.41-7.49 (m, 2H), 6.77 (d, 1H, J = 3.3Hz), 6.52 (dd, 1H, J = 3.3, 1.7Hz); ¹³C NMR (75 MHz, CDCl₃) δ 154.1, 142.3, 133.5, 132.6, 128.3, 128.2, 128.1, 127.7, 126.4, 125.9, 122.3, 122.1, 111.8, 105.7; MS (EI) m/z 194 [M⁺]; HRMS (EI) calcd. for C₁₄H₁₀O 194.0732, found 194.0738. **2-(6-Bromo-naphthalen-2-yl)-furan 2k.** Yield 85%; ¹H NMR (300 MHz, CDCl₃) δ 8.05 (s, 1H), 7.93 (s, 1H), 7.67-7.76 (m, 3H), 7.50-7.53 (m, 2H), 6.75 (d, 1H, *J* = 3.3 Hz), 6.50 (dd, 1H, *J* = 3.3, 1.7Hz); ¹³C NMR (75 MHz, CDCl₃) δ 153.5, 142.5, 133.5, 131.9, 129.8, 129.77, 129.70, 128.5, 127.4, 123.8, 121.8, 119.7, 111.8, 105.9; IR (KBr, cm⁻¹) 3057, 1699, 1470, 1429, 1215, 1161, 1007, 758; MS (EI) *m/z* 272 [M⁺]; HRMS (EI) calcd. for C₁₄H₉OBr 271.9836, found 271.9835.

6-Furan-2-yl-naphthalene-2-carboxylic acid methyl ester 2l. Yield 88%; ¹H NMR (300 MHz, CDCl₃) δ 8.55 (s, 1H), 8.14 (s, 1H), 8.04 (d, 1H, *J* = 8.6Hz), 7.79-7.94 (m, 3H), 7.54 (d, 1H, *J* = 1.6 Hz), 6.82 (d, 1H, *J* = 3.3 Hz), 6.53 (dd, 1H, *J* = 3.3, 1.6 Hz), 3.97 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.1, 153.5, 142.8, 135.7, 131.8, 130.8, 130.3, 129.7, 128.3, 127.2, 125.8, 123.0, 121.8, 111.9, 106.7, 52.2; IR (KBr, cm⁻¹) 3293, 1707, 1425, 1286, 1057, 630; MS (EI) *m/z* 252 [M⁺]; HRMS (EI) calcd. for C₁₆H₁₂O₃ 252.0786, found 252.0791.

2-Anthracen-2-yl-furan 2m. Yield 84%; ¹H NMR (300 MHz, CDCl₃) δ 8.42 (s, 1H), 8.36 (s, 1H), 8.29 (s, 1H), 7.97-8.00 (m, 3H), 7.74 (dd, 1H, J = 8.9, 1.6 Hz), 7.54 (d, 1H, J = 1.2 Hz), 7.43-7.46 (m, 2H), 6.68 (d, 1H, J = 3.3Hz), 6.53 (dd, 1H, J = 3.3, 1.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 154.4, 142.4, 132.2, 131.8, 131.6, 130.8, 128.6, 128.2, 128.1, 127.4, 126.5, 126.1, 125.5, 125.4, 122.3, 121.8, 111.8, 105.3; IR (KBr, cm⁻¹) 3025, 1686, 1443, 1356, 1201, 1007, 758, 690; MS (EI) m/z 244 [M⁺]; HRMS (EI) calcd. for C₁₈H₁₂O 244.0888, found 244.0887.

1,4-Difurylbenzene 2n. Yield 73%; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 4H), 7.47 (dd, 2H, J = 1.8, 0.7Hz), 6.66 (dd, 2H, J = 3.4, 0.7 Hz), 6.47 (dd, 2H, J = 3.4, 1.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 142.1, 129.7, 124.0, 111.7, 105.1; IR (KBr, cm⁻¹) 3010, 1611, 1440, 1342, 1208, 1123, 1008, 769; MS (EI) *m/z* 210 [M⁺]; HRMS (EI) calcd. for C₁₄H₁₀O₂ 210.0681, found 210.0681.

[2,2']Bifuranyl 20.^{S8} Yield 82%; ¹H NMR (300 MHz, CDCl₃) δ 7.40(d, 2H, J = 1.6 Hz), 6.54 (d, 2H, J = 3.3 Hz), 6.44 (dd, 2H, J = 3.3, 1.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 141.7, 146.6, 111.3, 105.1; MS (EI) m/z 134 [M⁺]; HRMS (EI) calcd. for C₈H₆O₂ 134.0367, found 134.0147.

2-Thiophen-2-yl-furan 2p.^{S9} Yield 78%; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dd, 1H, J = 1.8, 0.6 Hz), 7.25 (dd, 1H, J = 3.6, 1.1 Hz), 7.22 (dd, 1H, J = 5.1, 1.1 Hz), 7.03 (dd, 1H, J = 5.1, 3.6Hz), 6.49 (d, 1H, J = 3.3Hz), 6.44 (dd, 1H, J = 3.3, 1.8Hz); ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 141.6, 133.8, 127.6, 124.1, 122.5, 111.6, 104.9; MS (EI) m/z 150 [M⁺]; HRMS (EI) calcd. for C₈H₆OS 150.0139, found 150.0150.

2-Methyl-furan 2q.^{S3} Yield 89%; ¹H NMR (300 MHz, CDCl₃) δ 7.27 (d, 1H, J = 1.7 Hz), 6.26 (dd, 1H, J = 2.9, 1.7 Hz), 5.96 (d, 1H, J = 2.9 Hz), 2.28 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 152.1, 140.7, 110.2, 105.3, 13.3; MS (EI) m/z 82 [M⁺]; HRMS (EI) calcd. for C₅H₆O 82.0419, found 82.0423.

2-Benzyl-furan 2r.^{S3} Yield 92%; ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.31 (m, 6H), 6.28 (dd, 1H, J = 3.0, 1.9 Hz), 5.99 (d, 1H, J = 3.0Hz), 3.96 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 141.4, 138.1, 128.7, 128.5, 126.4, 110.2, 106.2, 34.4; MS (EI) m/z 158 [M⁺]; HRMS (EI) calcd. for C₁₁H₁₀O 158.0731, found 158.0715.

3-Butyl-2-methyl-furan 2s.^{S10} Yield 90%; ¹H NMR (300 MHz, CDCl₃) δ 7.20 (d, 1H, *J* = 1.7 Hz), 6.18 (d, 1H, *J* = 1.7 Hz), 2.28-2.33 (m, 2H), 2.20 (s, 3H), 1.42-1.49 (m, 2H), 1.26-1.36 (m, 2H), 0.91 (t, 3H, *J* = 7.3 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 147.0, 139.6, 118.9, 111.5, 32.6, 24.4, 22.3, 13.9, 11.4; MS (EI) *m*/*z* 138 [M⁺]; HRMS (EI) calcd. for C₉H₁₄O 138.1044, found 138.1038.

2-Methyl-5-pentyl-furan 2t. Yield 97%; ¹H NMR (300 MHz, CDCl₃) δ 5.83 (s, 2H), 2.55 (t, 2H, J = 7.6 Hz), 2.24 (s, 3H), 1.57-1.64 (m, 2H), 1.24-1.35 (m, 4H), 0.90 (t, 3H, J = 6.9Hz); ¹³C NMR (75 MHz, CDCl₃) δ 154.8, 149.9, 105.6, 105.0, 31.4, 28.0, 27.8,

22.4, 13.9, 13.4; IR (neat, cm⁻¹) 2958. 2932, 1715, 1470, 1377, 1101; MS (EI) m/z 152 [M⁺]; HRMS (EI) calcd. for C₁₀H₁₆O 152.1201, found 152.1209.

2-Hexyl-5-styryl-furan 2u. Yield 95%; ¹H NMR (300 MHz, CDCl₃) δ 7.44 (d, 2H, J = 7.5Hz), 7.31 (t, 2H, J = 7.3 Hz), 7.20 (t, 1H, J = 7.3 Hz), 6.95 (d, 1H, J = 6.2 Hz), 6.82 (d, 1H, J = 6.2 Hz), 6.23 (d, 1H, J = 3.1 Hz), 6.00 (d, 1H, J = 3.1 Hz), 2.64 (t, 2H, J = 7.6 Hz), 1.62-1.70 (m, 2H), 1.25-1.40 (m, 6H), 0.89 (t, 3H, J = 6.7 Hz)); ¹³C NMR (75 MHz, CDCl₃) δ 156.8, 151.5, 137.8, 128.6, 127.1, 126.1, 125.4, 116.7, 109.6, 106.8, 31.5, 28.8, 28.2, 27.9, 22.5, 14.0; IR (neat, cm⁻¹) 2929, 1598, 1530, 1494, 1447, 1017, 955, 778, 747, 691; MS (EI) m/z 254 [M⁺]; HRMS (EI) calcd. for C₁₈H₂₂O 254.16706, found 254.1669.

3-Butyl-5-pentyl-2-styryl-furan 2v. Yield 90%; ¹H NMR (300 MHz, CDCl₃) δ 7.45 (d, 2H, J = 7.6 Hz), 7.32 (t, 2H, J = 7.3 Hz), 7.19 (t, 1H, J = 7.3 Hz), 6.90 (d, 1H, J = 6.2 Hz), 6.83 (d, 1H, J = 6.2 Hz), 5.91 (s, 1H), 2.62 (t, 2H, J = 7.5 Hz), 2.44 (t, 2H, J = 7.5 Hz), 1.62-1.71 (m, 2H), 1.50-1.60 (m, 2H), 1.28-1.46 (m, 6H), 0.87-0.97 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 156.0, 146.8, 137.9, 128.5, 126.8, 125.9, 125.3, 123.7, 114.8, 108.3, 32.5, 31.5, 30.1, 27.9, 24.8, 22.5, 22.3, 14.0, 13.8; IR (neat, cm⁻¹) 2934, 1599, 1533, 1495, 1443, 1018, 945, 775, 684; MS (EI) *m*/*z* 296 [M⁺]; HRMS (EI) calcd. for C₂₁H₂₈O 296.2140, found 296.2132.

3-Butyl-2-methyl-5-pentyl-furan 2w. Yield 93%; ¹H NMR (300 MHz, CDCl₃) δ 5.76 (s, 1H), 2.51 (t, 2H, J = 7.6Hz), 2.26 (t, 2H, J = 7.5 Hz), 2.15 (s, 3H), 1.54-1.65 (m, 2H), 1.40-1.52 (m, 2H), 1.25-1.38 (m, 6H), 0.87-0.94 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 153.5, 144.7, 119.4, 106.4, 32.6, 31.5, 28.0, 27.8, 24.5, 22.4, 22.3, 13.98, 13.90, 11.3; IR (neat, cm⁻¹) 2958, 2931, 1693, 1466, 1378, 1148, 929; MS (EI) m/z 208 [M⁺]; HRMS (EI) calcd. for C₁₄H₂₄O 208.1827, found 208.1819.

Procedure for Recycling of [Au(TPP)]Cl for Allenone Cycloisomerization

To an acetone solution (30 mL) containing allenone **1a** (15 mmol) was added $[Au^{III}(TPP)]Cl (15 \ \mu mol)$ and CF₃CO₂H (1.5 mmol) and the resultant mixture was stirred at 60°C for 2 h. About 27 mL of solvent was removed under reduced pressure and *n*-hexane was added to the mixture to precipitate out the gold(III) porphyrin catalyst, which was filtered and washed with *n*-hexane (3 x 40 mL). Excess solvent was removed under reduced pressure and the product yield was determined by ¹H NMR analysis. After each reaction, the catalyst recovered by filtration was dried under reduced pressure. The Cycloisomerization of allenone **1a** was repeated a further nine times using the recovered catalyst under the same reaction conditions.

Competitive Allenone Cycloisomerizations Catalyzed by [Au(TPP)]Cl

To a solution of **1a** (0.5 mmol) and substituted phenyl allenone (0.5 mmol) in acetone (3 mL) was added [Au(TPP)]Cl (5 μ mol) and TFA (0.05 mmol). The mixture was stirred at 50°C for 30 mins. The amount of substrate conversions were determined by ¹H NMR analysis.

Table S2. Variation of log k_X/k_H with σ^+ for [Au(TPP)]Cl-catalyzed Cycloisomerizat	tion
of <i>Para</i> -substituted Allenones p -X-C ₆ H ₄ C(O)CH=C=CH ₂ 1a-d and 1g .	

allenone	Х	$k_{ m X}/k_{ m H}$	$\log k_{\rm X}/k_{\rm H(exptl)}$	$\sigma^{\!\scriptscriptstyle +}$
1c	OMe	1.86	0.27	-0.78
1b	Me	1.23	0.09	-0.31
1 a	Н	1	0	0
1g	Cl	0.89	-0.05	0.11
1d	Br	0.85	-0.07	0.15

Figure S1. Linear Free-energy Correlation of log k_X/k_H vs. σ^+ Plot for Cycloisomerization of *Para*-substituted Allenones *p*-X-C₆H₄C(O)CH=C=CH₂ **1a-d** and **1g** Catalyzed by [Au(TPP)]Cl.

Hydroamination of Phenylacetlyene Catalyzed by [Au(TPP)]Cl^{S11}

Phenylacetlyene (0.5 mmol), *p*-anisidine (0.55 mmol) and [Au(TPP)]Cl (25 μ mol) was placed in a round bottom flask and stirred at 80 °C for 12 h. On cooling the reaction mixture to room temperature, (4-methoxyphenyl)(1-phenylethylidene)amine **5** was obtained by re-crystallized by slowly diffusing *n*-hexane to a CH₂Cl₂ solution containing the reaction mixture. Yield 73%; ¹H NMR (300 MHz, CDCl₃) δ 7.97-8.00 (m, 2H), 7.42-

7.46 (m, 3H), 6.93 (d, 2H, J = 8.5 Hz), 6.78 (d, 2H, J = 8.5Hz), 3.80 (s, 3H), 2.27 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.4, 156.0, 152.0, 139.8, 130.3, 128.3, 127.1, 120.7, 114.3, 55.4, 17.3; MS (EI) m/z 225 [M⁺].

Hydrolysis of Phenylacetlyene Catalyzed by [Au(TPP)]Cl^{S12}

To a solution of phenylacetlyene (0.5 mmol) and water (2.5 mmol) in ethanol (3 mL) was added [Au(TPP)]Cl (25 μ mol) and H₂SO₄ (0.05 mmol). The mixture was stirred at reflux for 18 h. The reaction mixture was diluted with sat. NaHCO₃ and extracted with Et₂O, washed with brine, dried over MgSO₄. and filtered. Removel of the solvent under eeduced pressure and purification of the resultant residue by flash chromatography gave acetophenone **6**. Yield 87%; ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, 2H, *J* = 7.3Hz), 7.56 (t, 1H, *J* = 7.9 Hz), 7.46(t, 2H, *J* = 7.9 Hz), 2.61 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.9, 137.1, 133.0, 128.5, 128.2, 26.5; MS (EI) *m/z* 120 [M⁺].

Deuterium Labeling Experiments

Gold(III) Porphyrin-catalyzed Cycloisomerization of 1r to 2r

To a solution of **1r** (0.5 mmol) in $(CD_3)_2CO$ (3 mL) and D_2O (0.2 mL) was added [Au^{III}(TPP)]Cl (5 μ mol) and CF₃CO₂D (0.1 mmol). The mixture was stirred at 60°C for 30 mins. The solvent was removed and the crude residue was purified by silica gel column chromatography to **2r** in 84% yield with complete substrate conversion and with a deuterium content of 83% at C-3 as determined by ¹H NMR analysis (Figure S1a). Yield 84%; ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.31 (m, 6H), 6.28 (dd, 0.17H, J = 3.0, 1.9 Hz), 5.99 (s, 1H), 3.96 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 141.4, 138.1,

128.7, 128.5, 126.5, 110.2, 106.1, 34.4; IR (neat, cm⁻¹) 3032, 2926, 1587, 1502, 1456, 1155, 1070, 991, 939, 704; MS (EI) m/z 159 [M⁺]; HRMS (EI) calcd. for C₁₁H₉DO 159.0793, found 159.0788.

Treatment of 1r with CF₃CO₂D in (CD₃)₂CO and D₂O

To a solution of 1r (0.5 mmol) in in (CD₃)₂CO (3 mL) and D₂O (0.2 mL) was added CF₃CO₂D (0.1 mmol). The mixture was stirred at 60°C for 30 mins. The solvent was removed. ¹H NMR analysis of the crude residue revealed no deuterium exchange in 1r was observed.

Treatment of 2r with [Au(TPP)]Cl and CF₃CO₂D in (CD₃)₂CO and D₂O

To a solution of deuterium-free $2\mathbf{r}$ (0.5 mmol) in (CD₃)₂CO (3 mL) and D₂O (0.2 mL) was added [Au^{III}(TPP)]Cl (5 μ mol) and CF₃CO₂D (0.1 mmol). The mixture was stirred at 60°C for 30 mins. The solvent was removed and the remaining residue was purified by silica gel column chromatography. ¹H NMR analysis of $2\mathbf{r}$ revealed no deuterium exchange in the furan product was found, as shown in Figure S2.

Figure S2. 1H NMR Spectra of (a) **2r** obtained from $[Au^{III}(TPP)]Cl$ -catalyzed cycloisomerization of **1r** in the presence of $(CD_3)_2CO$, D_2O , and CF_3CO_2D , and (b) deuterium-free **2r** treated with $[Au^{III}(TPP)]Cl$ and CF_3CO_2D in $(CD_3)_2CO$ and D_2O .

Figure S3. ¹H NMR of 2-*p*-Tolyl-furan **2b**.

Figure S4. ¹H NMR of 2-(6-Bromo-naphthalen-2-yl)-furan **2k**.

Figure S6. ¹H NMR of 2-Anthracen-2-yl-furan **2m**.

Figure S7. ¹H NMR of 1,4-difurylbenzene **2n**.

Figure S8. ¹H NMR of 2-Methyl-5-pentyl-furan **2t**.

Figure S10. ¹H NMR of 3-Butyl-5-pentyl-2-styryl-furan **2v**.

Figure S11. ¹H NMR of 3-Butyl-2-methyl-5-pentyl-furan **2w**.

References

- S1 Che, C.-M.; Sun, R. W.-Y.; Yu, W.-Y.; Ko, C.-B.; Zhu, N.-Y.; Sun, H.-Z. Chem. Comm. 2003, 1718.
- S2 Ma, S.; Yu, S.; Yin, S. J. Org. Chem. 2003, 68, 8996.
- S3 Hashmi, A. S. K.; Ruppert, T. L.; Knöfel, T.; Bats, J. W. J. Org. Chem. 1997, 62, 7295.
- S4 Chadwick, D. J.; Chambers, J.; Meakins, G. D.; Snowden, R. L. J. Chem. Soc., Perkin Trans. 1 1973, 201.
- S5 Demir, A. S.; Reis, Ö.; Emrullahoğlu, M. Tetrahedron 2002, 58, 8055.
- S6 Li, J.-H.; Liang, Y.; Wang, D.-P.; Liu, W.-J.; Xie, Y.-X.; Yin, D.-L. J. Org. Chem.
 2005, 70, 2832.
- S7 Chadwick, D. J.; Chambers, J.; Hargraves, H. E.; Meakins, G. D.; Snowden, R. L. J. Chem. Soc., Perkin Trans. 1 1973, 2327.
- S8 Donohoe, T. J.; Orr, A. J.; Gosby, K.; Bingham, M. Eur. J. Org. Chem. 2005, 1969.
- S9 Su, W.; Urgaonkar, S.; McLaughlin, P. A.; Verkade, J. G. J. Am. Chem. Soc. 2004, 126, 16433.
- S10 Ma, S.; Li, L. Org. Lett. 2000, 2, 941.
- S11 Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349.
- S12 Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem. Int. Ed. 2002, 41, 4563.