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ARTICLE INFO ABSTRACT
Articl‘e history: This Letter describes the synthesis and SAR, developed through an iterative analog library approach, of a
Received 13 January 2010 novel series of selective M; mAChR antagonists, based on an N-(4-(4-alkylpiperazin-1-yl)phenyl)benzam-
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ide scaffold for the potential treatment of Parkinson’s disease, dystonia and other movement disorders.
Compounds in this series possess M; antagonist ICses in the 350 nM to >10 uM range with varying
degrees of functional selectivity versus M,-Ms.
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There are five subtypes of muscarinic acetylcholine receptors
(mAChR1-5 or M;-Ms), members of the G protein-coupled receptor

(GPCR) family A, that mediate the metabotropic actions of the neu- Hac‘N H 2
rotransmitter acetylcholine.’? M;, M3, and M5 activate phospholi- 0 (/\\L OH
pase C and calcium mobilization through G, whereas M, and M4 =N N o
05\ HN
NoH

block the action of adenylyl cyclase through Gi,." The cholinergic (OH

system, mediated by mAChRs, plays a critical role in a wide variety o -~ )
of CNS and peripheral functions including memory and attention 71/\© N Hb
mechanisms, motor control, nociception, regulation of sleep wake © [ ] N
cycles, cardiovascular function, renal and gastrointestinal function EHg

tomentiononly afew.'~ As a result, agents that can selectively mod- .

ulate the activity of mAChRs have the potential for therapeutic use in 1, scopolamine 2, pirenzepine 3
multiple peripheral and central pathological states. Due to high se- CHa
quence conservation within the orthosteric binding site of the five LTCVKSNS'WFPTSEDCPDGQNLCFKRWQY‘SPRMYﬂ
mAChR subtypes, it has been historically difficult to develop mAChR L

subtype-selective ligands.'~> Based on brain expression and cellular DFTRGCAATCPKAEYRDVINCCGTDKCNK
localization, data from mAChR knock-out mice and clinical trials 4 MT7

with muscarinic agents, the M; subtype is an attractive molecular
target for the treatment of CNS disorders. M; has been implicated
in the pathologies of Alzheimer’s disease (AD), Parkinson’s disease

o] 0O
(PD), and dystonia due to its role in cognition and motor control. EIN N NH EiN N N
N/ —
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The majority of reported muscarinic antagonists are unselec-
tive, such as a scopolamine, 1. Recently, pirenzapine, 2 has
emerged as a relatively selective M; receptor antagonist (20-50-
fold vs M,-Ms) and there are numerous reports of moderately
selective M antagonists (20-50-fold vs M,) such as 3.2 Interest-
ingly, the most selective M; antagonist, MT7, 4, the 65 amino acid
peptide, (>1000-fold vs M,-Ms) was derived from venom extracts
of the green mamba snake (Fig. 1).° From an M; functional screen
within the MLSCN, we identified M; antagonists such as 5 (M; ICsq
of 441 nM and with >340-fold selectivity versus My, but modest
selectivity versus M,, M3, and M5 (7.9-fold, 7-fold, and 2.4-fold,
respectively)) and 6 (M; ICso of 5.0 uM and with >30-fold selective
vs My-Ms5).!%12 Based on the M; selectivity of 6, attractive physio-
chemical properties (MW <350, clog P 3.6) and the fact that it was
the only benzamide-containing analog in the series, we initiated a
library synthesis effort!® to develop SAR around 6.

As shown in Scheme 1, the first round of library synthesis
focused on benzamide analogs of 6. Commercially available 3-
chloro-(4-(4-ethylpierazin-1yl)aniline 7 was acylated under
standard conditions employing polymer-supported reagents and
scavengers'® to afford a 24-member library of analogs 8, along
with re-synthesized 6. All analogs were then purified by mass-
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Scheme 1. Library synthesis of first generation analogs 8. All library compounds
were purified by mass-guided HPLC to >98% purity.'*

guided HPLC to analytical purity.'® To effectively screen small
libraries of potential mAChR ligands, we have adopted a strategy
to triage compounds in single-point screens (at 10 pM) at My, M3
and Ms—the G4-coupled mAChRs—to identify active and selective
compounds prior to running full concentration-response curves
(CRCs).'® Figure 2 shows the 10 uM single-point screens for the
first 25-member library of benzamide analogs 8.
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Figure 2. Single-point ECgo plus 10 uM compound triage screen at My, M3, and M5 to select compounds for full CRCs.
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Table 1
Structures and mAChR activities of analogs 8

Compd Ar M; ICso (LM)? M ICso (LM)? Ms IG5 (LM)? M, ICso (LM)? Ms ICso (LM)?
K
6 \© 32 >10 >10 >10 >10
5;
8a :@ 0.96 ND 0.82 ND 23
Cl
5
8b Kj 0.82 ND 56 ND 13
MeO
e
8c \©\ 29 69 >10 37 >10
&
8d \©/ 21 ND >10 ND 35
F
g F
8e 035 ND 37 ND 0.83
F F
F
g
8f \Q 32 ND >10 ND >10
OMe
L CF;
8g \©’ 2.9 >10 43 37 41
K CF4
8h j@ 0.49 2.7 42 15 41
FsC
2 CF3
8i Q 2.6 >10 >10 3.7 >10
CF,
d F
8j \@ 4.7 >10 >10 >10 >10
F

ND = not determined.

@ ICsps are an average of three independent experiments using mAChR (CHO) cell lines.

As Shown in Table 1, re-synthesized 6 displayed comparable
potency and mAChR selectivity to the original sample (M;
IC50=3.2 uM, ICs50>>10 pM for M,-Ms). Functionalized benzam-
ide analogs 8 possessed a wide range of M; potency and mAChR
selectivity, and we initially evaluated analogs 8 against My, Ms,
and Ms. Substitution in the 2-position, 8a (2-Cl) and 8b (2-
OMe) possessed submicromolar M; IC5os (960 nM and 820 nM,
respectively), but also showed low micromolar activity at Mjs
and Ms. A pentafluorophenyl congener 8e (Fig. 3A) proved to
be a submicromolar antagonist of both M; and Ms (ICses of
350 nM and 830 nM, respectively). Substitution at the 4-position,
as with the 4-OMe derivative 8f, was comparable to the original
6. Interestingly, a 2,5-bisCF; analog 8h had an M; ICsq of
490 nM, with ~ninefold functional selectivity versus Ms and
Ms (Fig. 3B). Intrigued by this potent and selective M; antago-
nist, we screened against M, and M, as well, but found that
8h possessed only 3-4-fold selectivity versus the Gj,-coupled
mAChRs (Table 1). 8i, a 3,5-bisCF; analog possessed a unique
profile as a dual M;/M, antagonist (ICsos of 2.6 uM and
3.7 uM, respectively), with little effect on an ACh ECg, at
10 uM on M,, M3 or Ms. Finally, a 3,4-difluoro 8j derivative
was also comparable to the original 6. While this library afforded
interesting results, further optimization was required.

Having surveyed the amide moiety while maintaining the N-
ethyl piperazine, we next generated two-dimensional libraries
wherein the nature of the alkyl group was varied (9-12) while also
surveying diverse benzamides to generate analogs 9a-f, 10a-f,
11a-f, and 12a-f (Scheme 2).

Application of the same strategy to triage compounds in single-
point screens (at 10 uM) at My, M3, and M5 to identify active and
selective compounds prior to running full (CRCs) was employed,
but >75% of these new analogs possessed no M; antagonist activity.
The SAR for this series was incredibly shallow, with only an N-pro-
pyl congener with the 3,5-dicholrobenzamide moiety 11i display-
ing reasonable activity (M7 ICso = 3.7 uM, ICs¢ > 10 uM for M3 and
Ms), and all other analogs possessing M; ICsgs in the 6-9 M range.

In summary, a two-dimensional parallel synthesis library cam-
paign was performed around 6, an M; antagonist identified in a
functional HTS screen. SAR for this series was shallow, but we were
able to improve the M; antagonist activity of 6 into the 350-
500 nM range with analogs 8, while maintaining good mAChR
selectivity. Interestingly, 8i is the first reported dual M,/My-prefer-
ring antagonist, which compliments the prototypical M;/My-pre-
ferring agonist xanomeline. Other chemical series from our M;
functional screen are currently under chemical optimization, and
further refinements will be reported in due course.
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Figure 3. CRCs for My, M3, and M5 for (A) compound 8e (M; ICso = 350 nM) and (B)
compound 8h (M; ICs = 490 nM), showing ~ninefold functional selectivity versus

Ms and Ms.
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Scheme 2. Library synthesis of second generation analogs 9a-f, 10a-f, 11a-f and
12a-f. All library compounds were purified by mass-guided HPLC to >98% purity.'*

[HBSS (Invitrogen) supplemented with 20 mM HEPES and 2.5 mM probenecid,
pH 7.4] for 45 min at 37 °C. Dye was then removed and replaced with assay
buffer. Cells were pre-incubated with 10 UM or a concentration-response
curve of novel compound, followed by a sub-maximal concentration of
acetylcholine or carbachol. The signal amplitude was first normalized to
baseline and then expressed as a percentage of the maximal response to
acetylcholine.
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