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Summary: Aprotic, Lewis-acid-catalyzed cyclization of epoxy diene 1, e.g. using MeAlCl2 
in CHQ2, afsords his-cyclization product 3 in good yield (75-7586). 

Epoxide-initiated cation-olefin cyclization plays a key role in the biosynthesis of triterpenes and steroids1 

Of all the known biosynthetic processes it is among the most powerful with regard to rapid development of 

molecular complexity. Thus, only one step is required for the conversion of 2,3-oxidosqualene to lanosterol, but 

an additional eighteen steps (and numerous enzymes) are needed to complete the biosynthesis of cholesterol. 

Nonetheless, attempts to utilize epoxides as initiators for synthetic cation-olefin polycyclization have met with 

poor yields, on the average about 20%. 2,3 We were especially interested in improving the synthetic 

methodology in this area because of its potentially great value when coupled to reactions for enantioselective 

epoxide synthesis. Recent studies in this laboratory have led to the successful development of enantioselective 

routes to chiral epoxides such as 2,3-oxidosqualene, 4 adding urgency to the development of superior cyclization 

methodology. In this note we report a much improved process for his-cyclization of an epoxy diene which is a 

good prototype for many interesting cyclizations and which involves especially mild conditions. 

The use of the epoxide function as the initiating unit in cation-olefin cyclizations is plagued by several 

problems in chemical systems in which the olefinic acceptor unit is not held in proximity to the electrophilic 

oxirane carbon. The most important of these are (1) facile pinacol rearrangement to a carbonyl compound and 

(2) formation of 1,2-diol or halohydrin derivatives, in lieu ofcyclization. Protic-acid catalysts and many Lewis 

acids can be very effective in promoting such non-cyclization pathways. There is also a problem with cyclization 

reactions which are terminated by deprotonation, since the protic acid which is formed as a result of cyclization 

can destroy the initiating epoxide function. We reasoned that the ideal catalyst for epoxide-initiated cyclization 

would be a species of the type Me2AlX that would activate the epoxide by the following process: 

V 

I * (RzAIX)z 

0 
R’ = R2A,o&’ = R2A,0q’ 

R,AIX; R,A\X; 

a b C 

It was expected that pinacol rearrangement would be minimized at the critical stage of species c, since multiple 

bonding between oxygen and aluminum would remove the driving force for such rearrangement. The group X 
should in principle either be non-C-nucleophilic or removed by another pathway, for example, silyl transfer. 

The unit R’ = CH2CH2C(OSiR3)=CH2 was chosen for the substrate (1) because it promotes the nucleophilicity 

of the terminating olefinic linkage, while leading to an innocuous product, R$SiX. The results of our study as 

reported below may be compared to those of a previous study5 which is shown in Scheme I. 
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Substrate 1 was synthesized from commercial geranylacetone as shown in Scheme 2. Under optimized 

conditions bromohydrin 2 was obtained in 54% yield after column chromatography on silica gel (SC) and 

conversion to the corresponding epoxide was very clean (96% isolated yield). t-Butyldimethylsilyl (Tbs) enol 

ether 1 could be formed in 92% yield under special conditions which involved in siru trapping of the initially 

formed terminal enolate by TbsCl, as indicated in Scheme 2. 6 Prior formation of the enolate and subsequent 

addition of TbsCl was unsatisfactory, since a mixture of the two isomeric silyl enol ethers was invariably 

obtained. 

A number of experiments were performed to determine optimum conditions for the his-cyclization of 1 

with results that can be summarized as follows. Under optimal conditions the yields of bicyclic product in 

several experiments were in the range 75-79%, using methylaluminum dichloride (0.3 to 0.5 equiv) as catalyst in 

methylene chloride’ at -78 “C with a reaction time of 1 h. The rate of reaction was found to vary with the Lewis 

acid in the order MeAlClz > MezAlCl > Me2AlOSO&YF3,8 but the yields of bicyclic product were comparable 

with all three Lewis acids. The principal products of the cyclization of 1 under optimal conditions were the 

bicyclic silyloxy ketone 3, the bicyclic hydroxy ketone 4 and the monocyclic silyloxy methyl ketone 5, as shown 

in Scheme 3. In practice, the crude cyclization product was obtained by addition of 5% aqueous hydrochloric 

acid to the reaction mixture and extractive isolation and the resulting mixture was silylated (TbsOS02CF3-2,6- 

lutidine in CH2C12 at 23 “C) and subjected to SG column chromatography. In addition to 3 (7579%), the. 

monocyclic methyl ketone 5 was isolated in lo-15% yield.9 The ratio of 3 to 4 in the cyclization mixture prior to 

isolation and silylation varied from 10 : 1 to 3 : 1 in different experiments. 10 A number of attempts to minimize 

the formation of the monocyclic product 5 were to no avail. Thus, lower temperature (-95 “C), the use of 

tribenzylsilyl or trimethylsilyl analogs of 1, or larger quantities of Lewis acid failed to decrease the formation of 5 

or to increase the yield of 3. 

A study was made of the cyclization of substrate 10, a Z-dehydroderivative of epoxide 1, under optimal 

conditions for the his-cyclization of 1. The synthesis of 10 was accomplished as outlined in Scheme 4. 

Geranylacetone upon treatment sequentially with KH in THF and then trimethylsilyl chloride gave silyl enol ether 

6 (E and Z) admixed with the terminal silyl enol ether (ca. 5 : 1 ratio). The mixture was formylated by reaction 

with 3 equiv of methyl formate and 3 equiv of sodium methoxide in MeOH-THF at 23 “C for 16 h, and the 

resulting mixture was allowed to react with 3.6 equiv of TsN3 at 0 to 23 “C for 4 h to give diazo ketone 7 (45% 

overall) and the isomeric diazomethyl ketone (17%) after separation by SG chromatography. Reaction of 7 with 

2.5 mole% of Rhz(OAc)d in THF at 23 “C for 40 min gave the Z-a,P-unsaturated ketone 8 as a colorless oil in 

53% yield.11 Epoxidation of 8 (m-chloroperoxy benzoic acid in CH2C12-sat. aq. NaHC03 at 0 “C for I h) gave 

9 (65%) which was silylated, as described above for the synthesis of 1, to give 91% of 10. Cyclization 

experiments with epoxy triene 10 and Me2AICl in CH2C12 at -78 “C gave many products, including 11 (4%), 12 

(8%) and 13 (12%). However, no bicarbocyclic compounds could be isolated. The bimolecular product 13 

presumably results from a Lewis-acid-catalyzed Diels-Alder pathway. From these results, it is clear that the extra 

olefinic function of 10 is deleterious to the desired cation-olefin cyclization. 

In conclusion, conditions have been developed which lead to good yields of the bicyclic ketone 3 by 

cation-olefin cyclization of 1 and which probably will prove effective for other substrates.t2 
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