

Available online at www.sciencedirect.com

Chinese Chemical Letters 21 (2010) 889-891

CHINESE Chemical Letters

www.elsevier.com/locate/cclet

First total synthesis of eudistalbin A

Pu Yong Zhang, Jun Lei Wang, Sheng Biao Wan, Tao Jiang*

School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China Received 25 December 2009

Abstract

Eudistalbin A was isolated from marine *tunicate eudistoma album* and possess cytotoxic activity ($ED_{50} < 3.2 \mu g/mL$) *in vitro* against the growth of KB human buccal carinoma cells. The synthetic eudistalbin A showed potent inhibitory activity against the breast carcinoma cell line MDA-231 with an IC₅₀ value of 2.1 μ mol/L using the metabolic assay MTT. All structures of new compounds were confirmed by ¹H NMR, ¹³C NMR, HRMS and optical rotation.

© 2010 Tao Jiang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: β-Carboline; Eudistalbin A; Pictet-Spengler reaction; Henry reaction; Total synthesis

Alkaloids with a β -carboline nucleus, containing planar tricyclic system, have been reported to be biologically active by inhibiting topoisomerases [1,2], CDK (cyclin-dependent kinases) [3,4], NF-kappaB signaling [5] and DNA synthesis [6], and by intercalating into DNA [7]. Marine tunicates are a typical class of β -carboline alkaloids including eudistalbin A, eudistomidin C and eudistomin T (Fig. 1). They have been the source of secondary metabolites possessing interesting antiviral, antibacterial and other biological activities. Eudistomin T and 6-methyl eudistomidin C have been successfully synthesized [8,9].

Eudistalbin A was isolated from EtOH extract of the marine *tunicate eudistoma album* and possess cytotoxic activity *in vitro* against the growth of KB human buccal carinoma cells ($ED_{50} < 3.2 \mu g/mL$) [10]. We report here the total synthesis and configuration confirmation of eudistalbin A with modified methods based on literatures [9,11–13].

Structural analysis of eudistalbin A, eudistomidin C and eudistomin T reveals that they may be biosynthetically derived *in vivo* from tryptophan residue, often ring-A functionalized, condensed with a second amino acid such as a leucine, cysteine and phenylalanine. Subsequent metabolic processes, including oxidation, dehydrogenation and decarboxylation, may then be envisioned to give rise to the corresponding three marine alkaloids structures as described in Scheme 1 [14].

According to the biomimetic synthesis, we choose BOC-L-leucine 1 as one of starting materials in the synthesis of eudistalbin A. The total synthetic route was shown in Scheme 2.

Firstly, Boc-L-leucine 1 was converted to the intermediate 2 using N,O-dimethylhydroxylamine and carbonyldiimidazole (CDI) in the presence of N,N-diisopropylethylamine (DIEA) in anhydrous THF and DMF with the yield of 89%. Compound 2 was reduced by LiAlH₄ to compound 3 in 86% yield [15].

* Corresponding author.

E-mail address: jiangtao@ouc.edu.cn (T. Jiang).

^{1001-8417/\$-}see front matter © 2010 Tao Jiang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. doi:10.1016/j.cclet.2010.03.017

Scheme 1. The route of biomimetic synthesis of eudistalbin A, eudistomidin C and eudistomin T.

Secondly, 4-bromo-2-nitrotoluene **4** was treated with *N*,*N*-dimethylformamide dimethyl acetal (DMF-DMA) and pyrrolidine at 110 °C to give the crude intermediate **5**, which was subjected to reductive cyclization with zinc in acetic acid and afforded 6-bromoindole **6** in 55% yield. 6-Bromoindole-3-carboxaldehyde **7** was obtained from **6** by Vilsmeier–Hacck reaction in the presence of phosphorus oxychloride (POCl₃) in DMF with yield of 98%. Compound **7** was condensed with nitromethane (CH₃NO₂) based on the classical Henry reaction to form compound **8** in 92% yield. Reduction of compound **8** by NaBH₄ at room temperature gave compound **9** in 98% yield. Subsequently, compound **9** was refluxed in THF with LiAlH₄ to give 6-bromotryptamine **10** with 95% yield.

Pictet–Spengler condensation was performed by the addition of two mole equivalents of trifluoroacetic acid (TFA) to a cooled equimolar solution of compound **3** and 6-bromotryptamine **10** in CH₂Cl₂ at -78 °C, followed by neutralization with triethylamine, to give 1,2,3,4-tetrahydro- β -carboline **11** in 76% yield.

Scheme 2. Reagents and conditions: (a) *N*,*O*-dimethylhydroxylamine hydrochloride, CDI/DIEA/THF/DMF, rt., 89%; (b) LiAlH₄/Et₂O, 0–5 °C, 86%; (c) DMF-DMA/pyrrolidine/DMF, rt.; (d) Zn, HOAc, 55% (from 4); (e) POCl₃/DMF/NaOH, 98%; (f) CH₃NO₂/CH₃COONH₄/ benzene, reflux, 92%; (g) NaBH₄/THF/CH₃OH, rt., 98%; (h) LiAlH₄/THF, reflux, 95%; (i) **3**, TFA/CH₂Cl₂, -78 °C, 76%; (j) DDQ/THF, 40 °C, 90%; (k) TFA/CH₂Cl₂, rt., 98%.

The key step was the dehydrogenation of compound **11**. As discussed earlier in other syntheses of β -carboline alkaloids, several methods may be used, such as the use of Pd/C [11], elemental sulfur [12], Pb(OAc)₄ [13] and DDQ [9]. As a result, refluxing of compound **11** with Pd/C in xylene, elemental sulfur in xylene or with Pb(OAc)₄ in glacial acetic acid did not lead to any dehydrogenation. When using elemental sulfur or Pd/C without solvent at high temperature of 200 °C for a few minutes gave low yields of dehydrogenation products of compound **11**. ¹H NMR analysis showed that loss of the Boc group occurred. Ultimately, the best method proved to be the dehydrogenation with DDQ [9]. Compound **11** was transformed into the intermediate **12** through DDQ oxidation in THF at 40 °C with the yield of 90%. In succession, removal of BOC group from **12** using TFA as catalyst afforded the target eudistalbin A in 98% yield. The structures of new compounds were confirmed by ¹H NMR, ¹³C NMR, HRMS or optical rotation [16].

The optical rotation of synthetic eudistalbin A (found: $[\alpha]_D^{20} - 10.5$ (*c* 0.1, MeOH); $[\alpha]_D^{20} - 16.0$ (*c* 0.5, DMSO)) was identical with those of natural eudistalbin A ($[\alpha]_D^{20} - 10.0$ (*c* 0.1, MeOH)) [10]. The synthetic eudistalbin A showed potent inhibitory activity against the breast carcinoma cell line MDA-231 with an IC₅₀ value of 2.1 µmol/L using the metabolic assay MTT.

In conclusion, an efficient synthetic method for eudistalbin A was developed. It is highly expected that this methodology not only can be used in the synthesis of other β -carbolines possessing an amino acid side chain, but also be useful in the synthesis of other complex natural products. Further application of this strategy is underway in our laboratory.

Acknowledgment

We are grateful for the financial support of Key International S&T Cooperation Projects of MOST (No. 2008DFA31040).

References

- [1] A.M. Deveau, M.A. Labroli, C.M. Dieckhaus, et al. Bioorg. Med. Chem. Lett. 11 (2001) 1251.
- [2] Y. Funayama, K. Nishio, K. Wakabayashi, et al. Mutat. Res. 349 (1996) 183.
- [3] Y. Song, J. Wang, S. Teng, et al. Bioorg. Med. Chem. Lett. 12 (2002) 1129.
- [4] Y. Song, D. Kesuma, J. Wang, et al. Biochem. Biophys. Res. Commun. 317 (2004) 128.
- [5] A.C. Castro, L.C. Dang, F. Soucy, et al. Bioorg. Med. Chem. Lett. 13 (2003) 2419.
- [6] M. Beljanski, M.S. Beljanski, Exp. Cell Biol. 50 (1982) 79.
- [7] S. Xiao, W. Lin, C. Wang, et al. Bioorg. Med. Chem. Lett. 11 (2001) 437.
- [8] M. James, I.W.J. Still, J. Chem. Soc. Perkin Trans. I 10 (1994) 1329.
- [9] J. Kobayashi, J. Cheng, T. Ohta, S. Nozoe, et al. J. Org. Chem. 55 (1990) 3666.
- [10] S.A. Adesanya, M. Chbani, M. Pais, J. Nat. Prod. 55 (1992) 525.
- [11] K.L. Rinehart, J. Kobayashi, G.C. Harbour, et al. J. Am. Chem. Soc. 106 (1984) 1524.
- [12] I.W.J. Still, J. Mcnulty, Heterocycles 29 (1989) 2057.
- [13] K.P. Lippke, W.G. Schunack, W. Wenning, et al. J. Med. Chem. 26 (1983) 499.
- [14] J. McNulty, I.W.J. Still, Curr. Org. Chem. 4 (2000) 121.
- [15] S.L. Harbeson, S.M. Abelleira, A. Akiyama, et al. J. Med. Chem. 37 (1994) 2918.
- [16] Spectral data. Compound **11** $[α]_D^{20} 8.1$ (*c* 0.2, MeOH); HRMS: *m/z* calcd. for C₂₁H₃₁N₃O₂Br⁺, 436.1600; found: 436.1592; ¹H NMR (600 MHz, CDCl₃): δ 8.75 (brs, 1H), 7.41 (s, 1H), 7.28 (d, 1H, *J* = 7.8 Hz), 7.13 (d, 1H, *J* = 7.8 Hz), 4.94 (m, 1H), 4.26 (m, 1H), 4.13 (s, 1H), 3.39 (m, 1H), 3.00 (m, 1H), 2.78 (m, 1H), 2.64 (m, 1H), 1.71 (m, 1H), 1.56 (m, 1H), 1.48 (s, 1H), 1.34 (m, 1H), 1.17 (s, 9H), 0.99 (d, 3H, *J* = 6.4 Hz), 0.96 (d, 3H, *J* = 6.4 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 156.8, 137.3, 134.6, 126.6, 122.4, 119.1, 114.8, 114.2, 110.5, 79.9, 57.8, 49.5, 44.1, 41.3, 28.3, 25.3, 23.4, 22.3, 22.0. Compound **12** $[α]_D^{20} 9.0$ (*c* 0.2, MeOH); HRMS: *m/z* calcd. for C₂₁H₂₇N₃O₂Br⁺, 432.1287; found: 432.1283; ¹H NMR (600 MHz, CDCl₃): δ 10.28 (brs, 1H), 8.36 (d, 1H, *J* = 5.0 Hz), 7.79 (d, 1H, *J* = 8.7 Hz), 7.71 (d, 1H, *J* = 5.0 Hz), 7.33 (m, 1H), 7.27 (d, 1H, *J* = 8.7 Hz), 5.40 (m, 1H), 2.05 (m, 1H), 1.98 (m, 1H), 1.79 (m, 1H), 1.44 (s, 9H), 0.99 (m, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 157.3, 145.4, 141.3, 138.3, 134.3, 128.7, 123.1, 122.6, 122.1, 120.6, 114.8, 113.9, 80.7, 49.9, 41.7, 28.6, 25.2, 23.4, 22.2. Eudistalbin A: $[α]_D^{20} 10.5$ (*c* 0.1, MeOH); $[α]_D^{20} 16.0$ (*c* 0.5, DMSO); HRMS: *m/z* calcd. for C₁₆H₁₉N₃Br⁺, 332.0762; found: 332.0773; ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.31 (d, 1H, *J* = 5.0 Hz), 8.17 (d, 1H, *J* = 8.2 Hz), 8.01 (d, 1H, *J* = 5.0 Hz), 7.86 (d, 1H, *J* = 8.2 Hz), 4.63 (t, 1H, *J* = 6.9 Hz), 1.79 (m, 1H), 1.74 (m, 1H), 1.52 (m, 1H), 0.88 (d, 3H, *J* = 6.9 Hz), 0.83 (d, 3H, *J* = 6.9 Hz); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 148.2, 141.9, 138.4, 133.9, 128.2, 123.9, 122.7, 121.3, 120.5, 115.3, 114.1, 52.3, 45.6, 24.9, 23.4, 22.6.