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ABSTRACT: Ru(II)-Pheox-catalyzed asymmetric cyclopropa-
nation of diethyl diazomethylphosphonate with alkenes,
including a,f-unsaturated carbonyl compounds, afforded the
corresponding optically active cyclopropylphosphonates in
high yields and with excellent diastereoselectivity (up to 99:1)
and enantioselectivity (up to 99% ee).

O ptically active cyclopropylphosphonate derivatives are
important units and found in useful biologically active
natural products or pharmacologically interesting compounds
such as an analogue of nucleotide 1 ,' an intermediate for HCV
NS3 protease inhibitor 2% an analogue of L-Glu 3, and an
analogue of fosmidomycin 4* (Figure 1). Moreover, cyclo-
propylphosphonates are also convenient intermediates for the
synthesis of alkylidenecyclopropane derivatives by the Wads-
worth—Emmons reaction.
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Figure 1. Examples of biologically relevant cyclopropylphosphonate
derivatives.

Among the few methods developed for the synthesis of
optically active cyclopropylphosphonate derivatives,'™*° the
catalytic asymmetric cyclopropanation of alkenes with diazo-
methylphosphonates is the most efficient method from a
stereoselective synthesis perspective. Over the past decade,
efficient catalytic systems have been developed using chiral
Cu(1),” Rh(11),* and Ru(1I)’ catalysts to afford the
corresponding cyclopropylphosphonates in good yields and
with high diastereo- and enantioselectivity. However, the
bulkiness of the diazomethylphosphonate moiety was found

-4 ACS Publications  © Xxxx American Chemical Society

(NCCH )a PFg~
R Ru+
R = Ar, Alkyl, NRR' @—( ]/
CO,R, C(=O)R o
C(=O)NRR' )-Pheox lg,OEt
+ * “OEt
o CH.Cl,, 5 h, rt RV
N i _OEt up to 93% yield
2X-" ~OEt up to 99:1 dr

up to 99% ee

to be an important factor in providing high diastereocontrol,
and the cyclopropanation of diazomethylphosphonate with
electron-deficient alkenes such as a,f-unsaturated carbonyl
compounds has not been reported yet. Herein, we report a
highly stereoselective synthesis of cyclopropylphosphonates by
the catalytic asymmetric cyclopropanation of simple diethyl
diazomethylphosphonate with various alkenes, including a,f-
unsaturated carbonyl compounds, catalyzed by a Ru(II)-Pheox
complex.

Recently, we reported that the complex, Ru(II)-Pheox, is
extremely efficient in carbene transfer reactions, particularly
cyclopropanation and N—H insertion reactions.'® Therefore,
we attempted the cyclopropanation of styrene Sa with diethyl
diazomethylphosphonate 6 in the presence of the Ru(1I)-Pheox
catalyst and first optimized the reaction conditions (Table 1).

The cyclopropanation reaction of the simple diethyl
diazomethylphosphonate 6 proceeded smoothly at room
temperature in various solvents to afford the corresponding
cyclopropylphosphonate 7 in an excellent trans/cis ratio (99:1
in most cases) and with high enantioselectivity (94—98% ee)
(Table 1, entries 1—6). The cyclopropanation in toluene and
CH;OH afforded low yields of the desired product due to the
formation of the dimer from the diazo compound and an O—H
insertion compound as the byproducts, respectively (Table 1,
entries 2 and S§). Conducting the reaction at a lower
temperature afforded lower yields and diastereoselectivity
(Table 1, entries 6—8). The catalyst loading could be decreased
to 1 mol %; however, the yield of 7 slightly decreased (Table 1,
entry 9).

With the optimal reaction conditions in hand, we further
studied the generality of the asymmetric cyclopropanation of
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Table 1. Optimization of Reaction Conditions”

Ru(ll)-Pheox (I?,OEt
X~ SOFEt solvent, 5h
temp [°C]
5a (5 equiv) 6 7
entry solvent temp [°C]  yield” [%] trans/cis ee? [%] trans
1 THF rt 81 96:4 97
2 toluene rt 43 99:1 94
3 acetone rt 79 99:1 98
4 dioxane rt 81 99:1 97
S CH,OH rt 36 99:1 97
6 CH,Cl, rt 93 99:1 97
7 CH,Cl, 0 93 982 97
8 CH,ClL, -10 78 98:2 97
9° CH,Cl, rt 67 99:1 97

“Reaction conditions: styrene (1 mmol) and diethyl diazomethyl-
phosphonate (0.2 mmol) in the presence of Ru(II)-Pheox (3 mol %)
under Ar. “Isolated yield. “Determined by NMR. “Determined by
chiral HPLC analysis. “With 1 mol % of catalyst.

various styrene derivatives in the presence of the chiral Ru(II)-
Pheox catalyst. As summarized in Table 2, styrene derivatives
bearing an electron-donating group such as methyl or methoxy

Table 2. Ru(II)-Pheox Catalyzed Asymmetric
Cyclopropanation of Various Alkenes with Diethyl
Diazomethylphosphonate”

o Ru(Il)-Pheox 0
(3 mol %)  _OFEt
RN+ Ny P —————— P ort
N~ TOEt CH.Cly, 5h, rt R’v
5 (5 equiv) 6 7
d o,
A o O .o ee [%l
entry Ei 7 yield” [%] trans/cis P
X
1 93 7a 99:1 97
X
2 87 7b 99:1 98
Me
X
3 92 7c 98:2 97
Me
X
4 87 7d 99:1 96
MeO
X
5 84 7e 98:2 98
Cl
X
6 92 7f 98:2 99
O,N Me
7 72 Tg 62:38 99
O N
8 O 84 7h 93:7 98
o
9 ©)LN/\ 79 7i 99:1 94
i :
/go

“Reaction conditions: alkenes 5 (1 mmol) and diethyl diazomethyl-
phosphonate 6 (0.2 mmol) in the presence of catalyst (3 mol %)
under Ar. YIsolated yield. “Determined by NMR. “Determined by
chiral HPLC analysis.

could also be easily cyclopropanated to afford the desired
cyclopropane products in high yields and with high diastereo-
and enantioselectivity (Table 2, entries 2—4). Moreover, the
cyclopropanation of styrene derivatives bearing an electron-
withdrawing group such as chloro and nitro was also
investigated (Table 2, entries S and 6). Interestingly, the
enantioselectivity could be increased to 99% ee, while the
diastereoselectivity decreased slightly to 98:2 dr. The cyclo-
propanation of a@-methylstyrene smoothly afforded the
corresponding cyclopropylphosphonate in a high yield and
with high enantioselectivity (Table 2, entry 7). However, the
diastereoselectivity was lower compared to that of the styrene
without a substituent at the a-position. Vinylamine derivatives
could also be cyclopropanated under the same reaction
conditions to afford the corresponding 2-amino cyclopropyl-
phosphonates in high yields and with high diastereo- and
enantioselectivity (Table 2, entries 8 and 9).1%* We also
examined the cyclopropanation of inner alkenes such as trans-2-
hexene and cis-2-hexene; however, no cyclopropane products
were observed due to the formation of a dimer from the diazo
compound.

Encouraged by the results obtained with the styrene and
vinylamine derivatives, we next turned our attention to the
cyclopropanation of diethyl diazomethylphosphonate with
electron-deficient alkenes such as a,f-unsaturated esters,
ketones, and amides (Table 3). Surprisingly, the reaction with

Table 3. Ru(II)-Pheox Catalyzed Asymmetric
Cyclopropanation of Various a,f-Unsaturated Carbonyl
Compounds with Diethyl Diazomethylphosphonate®
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(o) 9 OE (3 mol %) i _OEt
Lot NP R <P~ okt
R 7" TOEt CHuCly, 5h,rt W
5 (5 equiv) 6 © 7
entry 5 7 yield® [%]  trans/cis’ era[r(l)z]
1 i 65 17j 99:1 98
Pro N ! '
2 i 87 7k 98:2 98
pn A '
; o)
P A 7= 99:1 98
H
o)
4 gn ‘NJ\/ 33 7m 98:2 78
H
5 i 40 7 98:2 87
Bn \T J\/ n :

“Reaction conditions: alkenes 5 (1 mmol) and diethyl diazomethyl-
phosphonate 6 (0.2 mmol) in the presence of catalyst (3 mol %)
under Ar. “Isolated yield. “Determined by NMR. “Determined by
chiral HPLC analysis. Bn = benzyl.

phenyl acrylate afforded cyclopropane product 7j in 65% yield
and with an excellent trans/cis ratio (99/1) and enantiose-
lectivity (98% ee). Moreover, 1-phenylprop-2-en-1-one and N-
phenylacrylamide could also be cyclopropanated to afford the
corresponding products, 7k and 71, in high yields and with high
diastereo- and enantioselectivity (Table 3, entries 2 and 3).
Although the reaction was sensitive to the N-substituents of
acrylamides in terms of the yield (Table 3, entries 4 and S), to
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the best of our knowledge, this is the first example of the
catalytic asymmetric cyclopropanation of diazomethylphos-
phonate with electron-deficient alkenes.

To determine the absolute configuration of cyclopropyl-
phosphonates obtained using this catalytic system, we decided
to synthesize a known compound, diethyl-2-(butyl)cyclo-
propylphosphonate 70, by carrying out the Ru(II)-Pheox-
catalyzed cyclopropanation of diethyl diazomethylphosphonate
with hex-1-ene 5o (Scheme 1). The (1R2R) configuration was

Scheme 1. Determination of Absolute Configuration of

Diethyl-2-(butyl)cyclopropylphosphonate 70

(0]
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confirmed by a comparison of the optical rotation value
reported in the literature.'’ Interestingly, although a normal
alkene So was used as the substrate, highly stereoselective
cyclopropanation could also be achieved (trans/cis = 99:1).
Finally, to demonstrate the utility of our highly stereo-
selective cyclopropylphosphonate synthesis, we prepared a key
intermediate in the reported synthesis of the analogue of
nucleotide 1 and 1-Glu 3 (Scheme 2). The optically active

Scheme 2. Preparation of (—)-Diethyl-2-
(hydroxymethyl)cyclopropylphosphonate 8, a Key
Intermediate in the Synthesis of Analogue of Nucleotide 1
and L-Glu 3
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cyclopropylphosphonate 7p was readily synthesized by the
cyclopropanation of diethyl diazomethylphosphonate with
ethyl acrylate Sp in 78% yield and with high diastereoselectivity
(99:1 dr). The reaction of 7p with 2 equiv of LiBH, and 6
equiv of MeOH in THF afforded the desired product,
(—)-diethyl-2-(hydroxymethyl)cyclopropylphosphonate 8, in
86% yield and with excellent diastereoselectivity (99:1 dr)
and enantioselectivity (98% ee).'> This novel synthetic route
represents a significant improvement in terms of fewer steps

and the diastereo- and enantioselectivity efficiency reported
until now.">'*

In conclusion, we developed the highly stereoselective
cyclopropanation of alkenes with diethyl diazomethylphos-
phonate by using the Ru(Il)-Pheox complex as the catalyst.
Moreover, the cyclopropanation of electron-deficient alkenes
such as a,f-unsaturated ester, ketone, and amides could be
carried out smoothly under mild reaction conditions to afford
the corresponding cyclopropylphosphonate products in high
yields and with excellent diastereo- and enantioselectivity.
Furthermore, this method confirms the synthetic value of
(—)-diethyl-2-(hydroxymethyl) cyclopropylphosphonate 8, a
key intermediate in the synthesis of the analogue of nucleotide
1 and 1-Glu 3. This efficient procedure can contribute to the
progress of synthetic organic chemistry.
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