

Highly Stereoselective Synthesis of Cyclopropylphosphonates Catalyzed by Chiral Ru(II)-Pheox Complex

Soda Chanthamath, Seiya Ozaki, Kazutaka Shibatomi, and Seiji Iwasa*

Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Japan

(5) Supporting Information

ABSTRACT: Ru(II)-Pheox-catalyzed asymmetric cyclopropanation of diethyl diazomethylphosphonate with alkenes, including α,β -unsaturated carbonyl compounds, afforded the corresponding optically active cyclopropylphosphonates in high yields and with excellent diastereoselectivity (up to 99:1) and enantioselectivity (up to 99% ee).

O ptically active cyclopropylphosphonate derivatives are important units and found in useful biologically active natural products or pharmacologically interesting compounds such as an analogue of nucleotide 1,¹ an intermediate for HCV NS3 protease inhibitor 2,² an analogue of L-Glu 3,³ and an analogue of fosmidomycin 4^4 (Figure 1). Moreover, cyclopropylphosphonates are also convenient intermediates for the synthesis of alkylidenecyclopropane derivatives by the Wadsworth–Emmons reaction.⁵

Figure 1. Examples of biologically relevant cyclopropylphosphonate derivatives.

Among the few methods developed for the synthesis of optically active cyclopropylphosphonate derivatives,^{1-4,6} the catalytic asymmetric cyclopropanation of alkenes with diazomethylphosphonates is the most efficient method from a stereoselective synthesis perspective. Over the past decade, efficient catalytic systems have been developed using chiral Cu(I),⁷ Rh(II),⁸ and Ru(II)⁹ catalysts to afford the corresponding cyclopropylphosphonates in good yields and with high diastereo- and enantioselectivity. However, the bulkiness of the diazomethylphosphonate moiety was found

to be an important factor in providing high diastereocontrol, and the cyclopropanation of diazomethylphosphonate with electron-deficient alkenes such as α,β -unsaturated carbonyl compounds has not been reported yet. Herein, we report a highly stereoselective synthesis of cyclopropylphosphonates by the catalytic asymmetric cyclopropanation of simple diethyl diazomethylphosphonate with various alkenes, including α,β -unsaturated carbonyl compounds, catalyzed by a Ru(II)-Pheox complex.

Recently, we reported that the complex, Ru(II)-Pheox, is extremely efficient in carbene transfer reactions, particularly cyclopropanation and N–H insertion reactions.¹⁰ Therefore, we attempted the cyclopropanation of styrene **5a** with diethyl diazomethylphosphonate **6** in the presence of the Ru(II)-Pheox catalyst and first optimized the reaction conditions (Table 1).

The cyclopropanation reaction of the simple diethyl diazomethylphosphonate 6 proceeded smoothly at room temperature in various solvents to afford the corresponding cyclopropylphosphonate 7 in an excellent *trans/cis* ratio (99:1 in most cases) and with high enantioselectivity (94–98% ee) (Table 1, entries 1–6). The cyclopropanation in toluene and CH₃OH afforded low yields of the desired product due to the formation of the dimer from the diazo compound and an O–H insertion compound as the byproducts, respectively (Table 1, entries 2 and 5). Conducting the reaction at a lower temperature afforded lower yields and diastereoselectivity (Table 1, entries 6–8). The catalyst loading could be decreased to 1 mol %; however, the yield of 7 slightly decreased (Table 1, entry 9).

With the optimal reaction conditions in hand, we further studied the generality of the asymmetric cyclopropanation of

Received: April 19, 2014

Table 1. Optimization of Reaction Conditions^a

\bigcirc		O U P ⊂OEt OEt	Ru(II)-Pheo (3 mol %) solvent, 5 h temp [°C]	` → ()	
5a (5 e	equiv)	6			7
entry	solvent	temp [°C]	yield ^b [%]	trans/cis ^c	ee^d [%] trans
1	THF	rt	81	96:4	97
2	toluene	rt	43	99:1	94
3	acetone	rt	79	99:1	98
4	dioxane	rt	81	99:1	97
5	CH ₃ OH	rt	36	99:1	97
6	CH_2Cl_2	rt	93	99:1	97
7	CH_2Cl_2	0	93	98:2	97
8	CH_2Cl_2	-10	78	98:2	97
9^e	CH_2Cl_2	rt	67	99:1	97

^{*a*}Reaction conditions: styrene (1 mmol) and diethyl diazomethylphosphonate (0.2 mmol) in the presence of Ru(II)-Pheox (3 mol %) under Ar. ^{*b*}Isolated yield. ^{*c*}Determined by NMR. ^{*d*}Determined by chiral HPLC analysis. ^{*c*}With 1 mol % of catalyst.

various styrene derivatives in the presence of the chiral Ru(II)-Pheox catalyst. As summarized in Table 2, styrene derivatives bearing an electron-donating group such as methyl or methoxy

Table 2. Ru(II)-Pheox Catalyzed Asymmetric Cyclopropanation of Various Alkenes with Diethyl Diazomethylphosphonate^a

^{*a*}Reaction conditions: alkenes **5** (1 mmol) and diethyl diazomethylphosphonate **6** (0.2 mmol) in the presence of catalyst (3 mol %) under Ar. ^{*b*}Isolated yield. ^{*c*}Determined by NMR. ^{*d*}Determined by chiral HPLC analysis.

could also be easily cyclopropanated to afford the desired cyclopropane products in high yields and with high diastereoand enantioselectivity (Table 2, entries 2-4). Moreover, the cyclopropanation of styrene derivatives bearing an electronwithdrawing group such as chloro and nitro was also investigated (Table 2, entries 5 and 6). Interestingly, the enantioselectivity could be increased to 99% ee, while the diastereoselectivity decreased slightly to 98:2 dr. The cyclopropanation of α -methylstyrene smoothly afforded the corresponding cyclopropylphosphonate in a high yield and with high enantioselectivity (Table 2, entry 7). However, the diastereoselectivity was lower compared to that of the styrene without a substituent at the α -position. Vinylamine derivatives could also be cyclopropanated under the same reaction conditions to afford the corresponding 2-amino cyclopropylphosphonates in high yields and with high diastereo- and enantioselectivity (Table 2, entries 8 and 9).^{10b,e} We also examined the cyclopropanation of inner alkenes such as trans-2hexene and cis-2-hexene; however, no cyclopropane products were observed due to the formation of a dimer from the diazo compound.

Encouraged by the results obtained with the styrene and vinylamine derivatives, we next turned our attention to the cyclopropanation of diethyl diazomethylphosphonate with electron-deficient alkenes such as α,β -unsaturated esters, ketones, and amides (Table 3). Surprisingly, the reaction with

o	т	N ₂	O ≝∠OEt		Ru(II)-Pheox (3 mol %)			O ¦¦∠OEt
R	т		P OI	Ξt	CH ₂ Cl ₂	, 5 h, rt	R	``` `OEt
5 (5 equiv)			6				0 7	
	entr	y	5	7 yie	eld ^b [%]	trans/cis ^c	<i>trans</i> ee ^d [%]	
	1	PhO	°⊥_∕	65	7j	99:1	98	
	2	Ph	o L	87	7k	98:2	98	
	3	Ph 、 H	° L	71	71	99:1	98	
	4	Bn \ N H	o ↓_∕	33	7m	98:2	78	
	5	^{Bn} ∖N	o ↓	40	7n	98:2	87	

^{*a*}Reaction conditions: alkenes **5** (1 mmol) and diethyl diazomethylphosphonate **6** (0.2 mmol) in the presence of catalyst (3 mol %) under Ar. ^{*b*}Isolated yield. ^{*c*}Determined by NMR. ^{*d*}Determined by chiral HPLC analysis. Bn = benzyl.

phenyl acrylate afforded cyclopropane product 7j in 65% yield and with an excellent *trans/cis* ratio (99/1) and enantioselectivity (98% ee). Moreover, 1-phenylprop-2-en-1-one and *N*phenylacrylamide could also be cyclopropanated to afford the corresponding products, 7k and 7l, in high yields and with high diastereo- and enantioselectivity (Table 3, entries 2 and 3). Although the reaction was sensitive to the *N*-substituents of acrylamides in terms of the yield (Table 3, entries 4 and 5), to the best of our knowledge, this is the first example of the catalytic asymmetric cyclopropanation of diazomethylphosphonate with electron-deficient alkenes.

To determine the absolute configuration of cyclopropylphosphonates obtained using this catalytic system, we decided to synthesize a known compound, diethyl-2-(butyl)cyclopropylphosphonate **70**, by carrying out the Ru(II)-Pheoxcatalyzed cyclopropanation of diethyl diazomethylphosphonate with hex-1-ene **50** (Scheme 1). The (1R,2R) configuration was

Scheme 1. Determination of Absolute Configuration of Diethyl-2-(butyl)cyclopropylphosphonate 70

confirmed by a comparison of the optical rotation value reported in the literature.¹¹ Interestingly, although a normal alkene **50** was used as the substrate, highly stereoselective cyclopropanation could also be achieved (trans/cis = 99:1).

Finally, to demonstrate the utility of our highly stereoselective cyclopropylphosphonate synthesis, we prepared a key intermediate in the reported synthesis of the analogue of nucleotide 1 and L-Glu 3 (Scheme 2). The optically active

Scheme 2. Preparation of (-)-Diethyl-2-(hydroxymethyl)cyclopropylphosphonate 8, a Key Intermediate in the Synthesis of Analogue of Nucleotide 1 and L-Glu 3

cyclopropylphosphonate 7**p** was readily synthesized by the cyclopropanation of diethyl diazomethylphosphonate with ethyl acrylate 5**p** in 78% yield and with high diastereoselectivity (99:1 dr). The reaction of 7**p** with 2 equiv of LiBH₄ and 6 equiv of MeOH in THF afforded the desired product, (-)-diethyl-2-(hydroxymethyl)cyclopropylphosphonate 8, in 86% yield and with excellent diastereoselectivity (99:1 dr) and enantioselectivity (98% ee).¹² This novel synthetic route represents a significant improvement in terms of fewer steps

and the diastereo- and enantioselectivity efficiency reported until now. $^{1,3,14}\!$

In conclusion, we developed the highly stereoselective cyclopropanation of alkenes with diethyl diazomethylphosphonate by using the Ru(II)-Pheox complex as the catalyst. Moreover, the cyclopropanation of electron-deficient alkenes such as α,β -unsaturated ester, ketone, and amides could be carried out smoothly under mild reaction conditions to afford the corresponding cyclopropylphosphonate products in high yields and with excellent diastereo- and enantioselectivity. Furthermore, this method confirms the synthetic value of (-)-diethyl-2-(hydroxymethyl) cyclopropylphosphonate **8**, a key intermediate in the synthesis of the analogue of nucleotide **1** and L-Glu **3**. This efficient procedure can contribute to the progress of synthetic organic chemistry.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and characterization data of all the new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: iwasa@ens.tut.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 23550179) from the Japan Society for the Promotion of Science.

REFERENCES

(1) Midura, W. H.; Krysiak, J. A.; Mikołajczyk, M. Tetrahedron: Asymmetry 2003, 14, 1245–1249.

(2) Pyun, H.-J.; Clarke, M. O.; Cho, A.; Casarez, A.; Ji, M.; Fardis, M.; Pastor, R.; Sheng, X. C.; Kim, C. U. *Tetrahedron Lett.* **2012**, *53*, 2360–2363.

(3) Midura, W. H.; Krysiak, J.; Rzewnicka, A.; Supeł, A.; Łyżwa, P.; Ewas, A. M. *Tetrahedron* **2013**, *69*, 730–737.

(4) Devreux, V.; Wiesner, J.; Goeman, J. L.; Eycken, J. V.; Jomaa, H.; Calenbergh, S. V. J. Med. Chem. **2006**, 49, 2656–2660.

(5) Lewis, R. T.; Motherwell, W. B. Tetrahedron Lett. 1988, 29, 5033-5036.

(6) The method for the synthesis of racemic cyclopropylphosphonates: (a) Hirao, T.; Hagihara, M.; Ohshiro, Y.; Agawa, T. Synthesis 1984, 1, 60-61. (b) Dappen, M. S.; Pellicciari, R.; Natalini, B.; Monahan, J. B.; Chiorri, C.; Cordi, A. A. J. Med. Chem. 1991, 34, 161-168. (c) Lewis, R. T.; Motherwell, W. B.; Shipman, M.; Slawin, A. M. Z.; Williams, D. J. Tetrahedron 1995, 51, 3289-3302. (d) Yan, Z.; Zhou, S.; Kern, E. R.; Zemlicka, J. Tetrahedron 2006, 62, 2608-2615. (e) Davi, M.; Lebel, H. Chem. Commun. 2008, 4974-4976. (f) Krawczyk, H.; Wasek, K.; Kedzia, J.; Wojciechowski, J.; Wolf, W. M. Org. Biomol. Chem. 2008, 6, 308-318. (g) Amori, L.; Serpi, M.; Marinozzi, M.; Costantino, G.; Diaz, M. G.; Mermit, M. B.; Thomsen, C.; Pellicciari, R. Dokl. Akad. Nauk 2013, 450, 547-552. The method for the synthesis of optically active cyclopropylphosphonates: (h) Maux, P. L.; Abrunhosa, I.; Berchel, M.; Simonneaux, G.; Gulea, M.; Masson, S. Tetrahedron: Asymmetry 2004, 15, 2569-2573. (i) Amori, L.; Serpi, M.; Marinozzi, M.; Costantino, G.; Diaz, M. G.; Mermit, M. B.; Thomsen, C.; Pellicciari, R. Bioorg. Med. Chem. Lett. 2006, 16, 196-199. (j) Midura, W. H.; Sobczak, A.; Paluch, P. Tetrahedron Lett. 2013, 54, 223-226.

Organic Letters

(7) Charette, A. B.; Bouchard, J.-E. Can. J. Chem. 2005, 83, 533–542.
(8) Lindsay, V. N. G.; Fiset, D.; Gritsch, P. J.; Azzi, S.; Charette, A. B.

J. Am. Chem. Soc. **2013**, *135*, 1463–1470.

(9) (a) Ferrand, Y.; Maux, P. L.; Simonneaux, G. Org. Lett. 2004, 6, 3211–3213. (b) Paul-Roth, C.; Montigny, F. D.; Rethoré, G.; Simonneaux, G.; Gulea, M.; Masson, S. J. Mol. Catal. A: Chem. 2003, 201, 79–91.

(10) (a) Abu-Elfotoh, A.-M.; Phomkeona, K.; Shibatomi, K.; Iwasa, S. Angew. Chem., Int. Ed. 2010, 49, 8439–8443. (b) Chanthamath, S.; Phomkeona, K.; Shibatomi, K.; Iwasa, S. Chem. Commun. 2012, 48, 7750–7752. (c) Chanthamath, S.; Thongjareun, S.; Shibatomi, K.; Iwasa, S. Tetrahedron Lett. 2012, 53, 4862–4865. (d) Abu-Elfotoh, A.-M.; Nguyen, D. P. T.; Chanthamath, S.; Phomkeona, K.; Shibatomi, K.; Iwasa, S. Adv. Synth. Catal. 2012, 354, 3435–3439. (e) Chanthamath, S.; Nguyen, D. T.; Shibatomi, K.; Iwasa, S. Org. Lett. 2013, 15, 772–775. (f) Chanthamath, S.; Takaki, S.; Shibatomi, K.; Iwasa, S. Angew. Chem., Int. Ed. 2013, 52, 5818–5821.

(11) Absolute configuration of 70 was determined to be (1R,2R) by comparing the reported specific optical rotation: $[\alpha]_D^{25}$ –55.7 (*c* 1.00, CHCl₃), Lit. $[\alpha]_D^{20}$ –50.1 (*c* 1.20, CHCl₃) for 1R,2R-isomer, see: Krawczyk, H.; Wasek, K.; Kedzia, J. Synthesis **2009**, *9*, 1473–1476.

(12) The reduction of the optically active cyclopropylphosphonate7p was performed using the procedure by Midura; see: Reference 3.(13) The enantioselectivity was determined by benzoylation using benzoyl chloride (see Supporting Information).

(14) Hah, J. H.; Gil, J. M.; Oh, D. Y. Tetrahedron Lett. 1999, 40, 8235-8238.