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In 2000, Namikoshi et al. reported the isolation and structural
elucidation of a novel [5,6]-bisbenzannulated spiroacetal[1]

from the marine fungus Paecilomyces sp.[2] This unique
spiro[chroman-2,1’(3’H)-isobenzofuran] derivative was iden-
tified as a potential antimitotic agent (20 % inhibition at
50 mm) using an assay screening for microtubule assembly
inhibitors and was subsequently named paecilospirone (1).[3]

Despite the isolation of paecilospirone more than a decade
ago, no total synthesis of this novel compound has yet been
reported.[5] Herein, we present the first enantioselective
synthesis of paecilospirone 1.

Initial synthetic studies focused on the acid-catalyzed
cyclization of ketone 2 to the spiroacetal core of paecilospir-
one (Scheme 1). However, under standard acidic conditions,
ketone 2 readily underwent elimination to afford unsaturated
spiroacetals 3 and 4. This problem was exacerbated by the
axial orientation of the hydroxy group positioned b to the
spirocentre and anti to a vicinal hydrogen atom. Based on this
observation, reaction conditions were carefully developed to
assemble the spiroacetal core using a pH-neutral double
deprotection/cyclization strategy.

It was proposed that bis(allyl) ether ketone 5 would
undergo palladium(0)-catalyzed removal of protecting groups
and in situ spiroacetalization. In turn, ketone 5 would be
constructed through addition of the aryllithium intermediate

derived from bromide 6 to aldehyde 7 (Scheme 2). An anti-
selective aldol reaction between ketone 8 bearing a chiral
auxiliary and aldehyde 9 should then establish the contiguous
stereogenic centers in aldehyde 7. Overall, the proposed
retrosynthetic strategy was designed with maximum flexibility
to allow production of a focused library of analogues for
future biological evaluation.

Construction of aldehyde fragment 9 began with known
aldehyde 10 (Scheme 3).[6] The phenolic moiety was protected
as an allyl ether (11). Reduction of the aldehyde group and
silyl protection of the resulting alcohol furnished 12, which
was subjected to a lithium–halogen exchange/formylation
procedure to afford the requisite aldol precursor 9 in good
overall yield (72 %).

Scheme 1. Standard acid-catalyzed deprotection/cyclization of ketone
2, acid = Bi(OTf)3, TMSBr, NaHSO4·SiO2, CBr4 or PPTS. MOM= me-
thoxymethyl, TBS = tert-butyldimethylsilyl, Tf = trifluoromethanesul-
fonyl, TMS= trimethylsiyl, PPTS= pyridinium p-toluenesulfonate.

Scheme 2. Retrosynthetic analysis. Bn = benzyl.
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Initial attempts to access aldehyde 7 using Evans’ MgCl2-
catalyzed anti-selective aldol methodology[7] only afforded
the desired anti-aldol adduct in low yield (19 %), albeit with
high diastereoselectivity. Further modifications did not
improve the yield to an acceptable level. The lack of success
associated with the reaction was attributed to the highly
sterically hindered nature of aldehyde 9. Thus, an alternative
aldol protocol based on the use of a lactate-derived CH-
(OBz)Me group as the chiral auxiliary was investigated.[8]

Ketone 13 was synthesized using conditions similar to that
described by Paterson et al. (Scheme 4).[8] Pleasingly, the

union of fragments 13 and 9 proceeded smoothly to afford an
inseparable mixture of aldol diastereoisomers 14 in good yield
(d.r. 3:1). Silyl protection of the b-hydroxy ketones 14 as TES
ethers allowed separation of the individual anti-isomers.[9]

Subsequent reductive cleavage (LiBH4) of the benzoate
ester and oxidative glycol cleavage with lead(IV) acetate[10]

successfully delivered aldehyde 7 as the single 4R,5S isomer.
To establish the absolute configuration of the newly

formed chiral centers, silyl ether 15 was treated with
Et3N·3HF and converted into bis(benzoate) derivative 16
(Scheme 5). The absolute configuration of 16 was unambig-
uously confirmed by single-crystal X-ray analysis.[11]

Known benzaldehyde 17 (Scheme 6),[12] required for the
preparation of bromide 6, was readily synthesized from
salicylaldehyde. Benzyl protection of the phenol group and
subsequent reduction with NaBH4 provided alcohol 18, which
underwent allylation to afford the required bromide coupling
partner 6 (80 % over 3 steps).

Scheme 7 summarizes the final elaboration to paecilospir-
one 1. Treatment of bromide 6 with nBuLi (1.3 equiv) and
subsequent addition of aldehyde 7 at �78 8C afforded the
corresponding alcohol as a diastereoisomeric mixture.
Attempts to improve the yield of the addition using tBuLi
were unsuccessful, rather, partial cleavage of the phenolic
allyl ether took place.[13] Subsequent oxidation of the secon-
dary alcohol yielded ketone 5. Pleasingly, the critical double
deallylation/spirocyclization was effected using catalytic Pd0

in the presence of a PMHS–ZnCl2 complex,[14] and provided
advanced [5,6]-benzannulated spiroacetals 19 in 75% yield as
an inseparable mixture of anomers (d.r. 3.5:1).

Scheme 3. Construction of aldehyde 9. Reagents and conditions:
a) K2CO3, allyl bromide, EtOH, reflux, 16 h, 93 %; b) NaBH4, EtOH, RT,
15 min; c) TBSCl, imidazole, DMF, RT, 16 h, 92% over two steps;
d) tBuLi, Et2O, �78 8C, 1 min; then DMF, �78 8C!RT, 14 h, 84 %.
DMF= N,N’-dimethylformamide.

Scheme 4. Synthesis of aldehyde 7. Reagents and conditions:
a) cHex2BCl, Me2NEt, Et2O, 0 8C, 2 h; then 9, �78 8C!�26 8C, 14 h;
b) H2O2, pH 7 buffer, MeOH, 0 8C, 1 h, 79% over two steps (d.r. 3:1);
c) TESOTf, 2,6-lutidine, CH2Cl2, �50 8C, 3 h, 65%; d) LiBH4, THF,
�78 8C!RT, 24 h; e) Pb(OAc)4, Na2CO3, CH2Cl2, 0 8C, 1 h, 50% over
two steps. Bz = benzoyl, cHex2BCl = chlorodicyclohexylborane, TES =
triethylsilyl, THF = tetrahydrofuran.

Scheme 5. Absolute configuration of bis(benzoate) 16. a) Et3N·3HF,
THF, 9 h; b) p-BrC6H4COCl, pyridine, 48 h, 60 % over two steps.

Scheme 6. Construction of bromide 6. a) BnBr, K2CO3, TBAI, DMF, RT,
14 h, 99%; b) NaBH4, EtOH, RT, 15 min, 90 %; c) NaH, THF, 0 8C;
then allyl bromide, TBAI, RT, 16 h, 90 %. TBAI = tetrabutylammonium
iodide.
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The primary TBS group was selectively removed in the
presence of a secondary TES group using Et3N·3HF under
controlled conditions (0 8C, 9 h, unchanged starting material
was recovered and recycled). TPAP oxidation[15] followed by
immediate addition of octylmagnesium bromide to the crude
aldehyde afforded readily separable alcohols 21 a and 21b (as
single isomers at the benzylic position) along with Grignard
reduction product 20 (30%). The latter was recycled and all
attempts to limit its formation using inorganic additives such
as LiCl or CeCl3

[16] were unsuccessful.

The major isomer 21a obtained from the spirocyclization
step was confirmed to be anomerically stabilized by nOe
experiments. Oxidation of benzyl alcohol 21a and subsequent
stepwise removal of the TES and benzyl groups furnished
paecilospirone 1. The spectroscopic data (1H NMR,
13C NMR, and HRMS analyses) for the synthetic material
were in full agreement with those reported for the natural
product and the ee value was determined to be 95 % by HPLC
on a chiral stationary phase.[2, 17]

In summary, the first total synthesis of paecilospirone 1
has been successfully executed in 19 steps in the longest linear
sequence. Key features include the use of an anti-selective
lactate-derived aldol reaction[8] between chiral ketone 13 and
sterically congested aldehyde 9 and the novel application of a
palladium(0)-catalyzed double deallylation/spirocyclization
for the construction of the sensitive spiroacetal core. The
overall approach is enantioselective, scalable, and highly
amenable to the production of analogues. Synthesis and
biological evaluation of such molecules may provide more
potent antimitotic agents.
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