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Abstract: A concise formal synthesis of (–)-martinellic acid has
been accomplished by preparing optically active dipyrroloquinoline
as a key synthetic intermediate, which was prepared via the radical
addition–cyclization–elimination of oxime ether carrying an unsat-
urated ester followed by two chemoselective reductions of the car-
bonyl groups.
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Martinellic acid (1) and martinelline (2) have attracted
considerable interest since they were isolated by Witherup
and co-workers1 in 1995, principally because of their an-
tagonistic activity against some G-protein coupled recep-
tors such as bradykinin B1 and B2, a1-adrenergic, and
muscarinic receptors (Figure 1). In addition, both alka-
loids contain a pyrroloquinoline ring system, which has
not been discovered in natural products so far. Therefore,
it is not surprising that these alkaloids have been the ob-
ject of intense synthetic effort.2–4

Figure 1 Martinellic acid and martinelline

Recently, we reported a formal synthesis of (±)-martinel-
line via two types of radical reactions as the key steps.3d

Those are the radical addition–cyclization–elimination
(RACE) of oxime ether and a C–C bond formation
through a radical 1,5-hydrogen atom translocation.
Though several syntheses of racemic martinelline, marti-
nellic acid and the pyrroloquinoline core have been
achieved, to our knowledge, there is only one paper pub-
lished on the asymmetric synthesis of (–)-martinellic acid
by Ma’s group.2a,b However, their method required many
steps (twenty) to achieve the synthesis of (–)-martinellic
acid. We have now succeeded in asymmetric formal
synthesis of (–)-martinellic acid. Aiming at a short-step
synthesis of (–)-martinellic acid, we designed a synthetic

strategy for a key intermediate 7 as shown in Scheme 1.
Our strategy consists of two key steps: (1) the construc-
tion of optically active and requisitely substituted dipyr-
roloquinoline 6a using the RACE reaction of the optically
active oxime ether 5 bearing a pyrrolidinone ring; (2)
chemoselective reduction of two lactam carbonyl groups
in dipyrroloquinoline 6a. Snider and colleagues3b reported
the synthesis of (±)-martinellic acid via a dipyrrolo-
quinoline as an intermediate, which was prepared by the
reaction of aniline with Meldrum’s acid-activated vinyl-
cyclopropane followed by [3+2] dipolar cycloaddition.
However, it is difficult to apply this method to the prepa-
ration of optically active (–)-martinellic acid because the
optically active Meldrum’s acid activated vinylcyclo-
propane is rapidly racemized.5 On the other hand, in our
method, the optically active substrate 5 for the RACE re-
action used in our synthesis would be efficiently prepared
by Cu- or Pd-catalyzed cross-coupling reaction of aryl-
bromide 4 and L-pyroglutamic acid ethyl ester (3).

Scheme 1

We first investigated the RACE reaction of model com-
pound 14 that has no ester group in the benzene ring
(Scheme 2). The requisite substrate 14 was readily pre-
pared from 2-bromobenzaldehyde (9) as follows. Accord-
ing to the Buchwald–Hartwig cross-coupling method,6 the
optically active L-pyroglutamic acid ethyl ester (3),7 pre-
pared from L-glutamic acid (8), was treated with 2-bro-
mobenzaldoxime ether (10) in the presence of CuI,
K2CO3, and a ligand to give N-arylpyrrolidinone 11 in
53% yield. When Pd was used as a catalyst, the yield of 11
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was improved to 99%. The ester 11 was converted to the
desired a,b-unsaturated ester 14 via the reduction
(NaBH4), Albright oxidation (DMSO–TFAA), and Wittig
reaction.

According to our procedure developed in the radical addi-
tion–cyclization of oxime ether,3d treatment of 14 with
Bu3SnH and AIBN in refluxing benzene gave two types of
products, dipyrroloquinoline 15 (60%)8 and pyrroloquin-
oline 16 (14%) bearing an amino ester group. The major
product was the desired (3aR,3bS,11bS)-dipyrroloquino-
line (15a)8 which was isolated in 33% yield. As a possible
reaction pathway, 15a would be formed via consecutive
reactions which are addition of a stannyl radical to the
oxime ether group to form a benzyl radical, radical cy-
clization to form a quinoline ring, pyrrolidone ring forma-
tion, and finally cleavage of the N–O bond. However, we
are unable at the moment to offer a detailed explanation of
the reaction pathway in this interesting radical reaction.

We have now succeeded in the preparation of optically ac-
tive dipyrroloquinoline 15a using the RACE reaction.

Based on the preliminary results, we next investigated the
radical reaction of oxime ether 5 carrying the ester group
and selective conversion of dipyrroloquinoline 6a to the
known key intermediate 7 for synthesis of (–)-martinellic
acid (Scheme 3). The a,b-unsaturated ester 5 was pre-
pared from commercially available 17 by a similar proce-
dure to form 14. The benzyl dibromide 18, prepared from
commercially available methyl 4-bromo-3-methylbenzo-
ate (17), was treated with AgNO3 in methanolic water to
give the aldehyde 19, which was converted to O-benzyl-
oxime ether 4 (80% from 18) by the usual procedure. The
Pd-catalyzed cross-coupling reaction of bromide 4 with L-
pyroglutamic acid ethyl ester (3) under the Buchwald con-
ditions gave the optically active oxime ether 20 in 98%
yield while the coupling reaction using CuI gave 20 in
moderate yield. According to the procedure for 14, the

Scheme 2 Reagents and conditions: (a) SOCl2, EtOH, reflux, 95%;
(b) BnONH2·HCl, NaOAc, MeOH–CH2Cl2, r.t., 96%; (c) Pd2(dba)3,
xantphos, Cs2CO3, 1,4-dioxane, 100 °C, 99%; (d) NaBH4, MeOH,
r.t.; (e) TFAA, DMSO, Et3N, CH2Cl2, –65 °C to r.t.; (f) ethyl (triphen-
ylphosphoranylidene)acetate, THF, r.t., 90% (from 11); (g) Bu3SnH,
AIBN, benzene, reflux, 60% (15); 14% (16).
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Scheme 3 Reagents and conditions: (a) NBS, AIBN, CCl4, reflux,
quant.; (b)AgNO3, H2O, MeOH, reflux; (c) BnONH2·HCl, NaOAc,
MeOH–CH2Cl2, r.t., 80%; (d) L-pyroglutamic acid ethyl ester (3),
Pd2(dba)3, xantphos, Cs2CO3, 1,4-dioxane,100 °C, 98%; (e) NaBH4,
MeOH, r.t.; (f) TFAA, DMSO, Et3N, CH2Cl2, –65 °C to r.t.; (g) ethyl
(triphenylphosphoranylidene) acetate, THF, r.t., 82% (from 20); (h)
Bu3SnH, AIBN, benzene, reflux, 45% (including its stereoisomers);
(i) LiBH4, MeOH–THF, reflux, 76%; (j) BH3·THF, THF, reflux; (k)
TFAA, Et3N, DMAP, CH2Cl2, r.t., 79% (from 21).
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ester 20 was converted to the desired a,b-unsaturated ester
5 (82% from 20). We next carried out the RACE reaction
of ester 5 which proceeded smoothly to give the desired
3aR,3bS,11bS-dipyrroloquinoline (6a) and its stereoiso-
mers in 45% combined yield.9

We next investigated the chemoselective reduction of 6a
carrying three different types of carbonyl groups such as
the ester, N-arylpyrrolidinone, and N-norpyrrolidinone. In
order to reduce selectively the carbonyl group of N-
arylpyrrolidinone, the dipyrroloquinoline 6a was treated
with LiBH4 in the presence of MeOH in THF to afford
the desired amino alcohol 2110 in 76% yield. Finally, the
reduction of lactam 21 with borane–THF followed by
acylation of the resulting amine with trifluoroacetic anhy-
dride gave the desired trifluoroacetamide 711 (79%  yield
from 21), which is the key intermediate for synthesis of
(–)-martinellic acid.

In conclusion, we have newly developed an 11-step syn-
thesis (10% overall yield) of the optically active key inter-
mediate for synthesis of (–)-martinellic acid. Key steps
include the RACE reaction of oxime ether and chemo-
selective reductions of three carbonyl groups.
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16 +64.0 (c 0.99, CHCl3) {lit.2a,2b [a]D
20 +65.1 

(c 0.97, CHCl3)}.
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