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ABSTRACT

Electrophilic aromatic substitution of activated benzenes with the

captodative olefin 1-acetylvinyl-1-p-nitrobenzoate (9), and with the

electron-deficient alkenes methyl acrylate (8a), methylvinylketone (8b),

and acrolein (8c) were evaluated under Lewis acid catalysis. Olefin 9

proved to be much more reactive than alkenes 8a–8c. We also

describe a one-step synthesis of the antifungal and larvicidal natural

2719

DOI: 10.1081/SCC-200026193 0039-7911 (Print); 1532-2432 (Online)

Copyright # 2004 by Marcel Dekker, Inc. www.dekker.com

*Correspondence: Joaquı́n Tamariz, Departamento de Quı́mica Orgánica, Escuela

Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan
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product methyl 3-(2,4,5-trimethoxyphenyl)propionate (6), by reaction of

1,2,4-trimethoxybenzene with 8a under microwave irradiation.

Key Words: Friedel–Crafts; Captodative olefins; Methyl 3-(2,4,5-tri-

methoxyphenyl)propionate.

INTRODUCTION

Antioxidant compounds of natural occurrence, containing the basic skel-

eton of cinnamic acid, have attracted wide interest because of their diverse

biological properties. In particular, ferulic acid (1),[1] caffeic acid (2),[2] and

analogs 3a–3c[3] along with some of their dimers 4a–4b,[4] are only a few

of a long list of phenolic derivatives exhibiting hypolipidemic, anticanceri-

genic, antiinflamatory, antimicrobial, and antineoplastic activities.[1b,3,5]

These compounds have been isolated from a variety of natural sources (for

recent examples, see Ref.[6]). Among the natural derivatives containing a satu-

rated side chain, one can find compounds 5a–5b and the a-hydroxylated 5c.[7]

Recently, methyl 3-(2,4,5-trimethoxyphenyl)propionate (6) was isolated from

the root bark of Cordia alliodora, showing high antifungal and larvicidal

activities in biological tests.[8]

Several strategies have been pursued for the synthesis of this kind of

structures. In most cases, they involve the combination of the preformed

aryl scaffold with the carboxylic synthon, in order to introduce the propionic

Aguilar, Benavides, and Tamariz2720
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side chain. Common examples of this approach are the condensation between

substituted benzaldehydes with malonic acid or malonates,[9] the Heck reac-

tion starting from the aromatic ring and acrylates,[10] or conjugate addition

of organocuprates to alkenoic acids and esters.[11]

The introduction of side chains in aromatic rings has been usually carried

out by Friedel–Crafts acylation or alkylation with alkyl halides or alkenes.[12]

However, conjugate addition of aryl rings to Michael acceptors promoted by

Lewis acids, has been mostly limited due to several factors, among them: the

difficulty of properly activating the starting substrates, finding optimum reac-

tion conditions, or the formation of mixtures of isomers.[12,13]

As a continuation of our studies on the reactivity of the captodative olefins

1-acetylvinyl-1-arenecarboxylates,[14] and stimulated by the design and syn-

thesis of promising hypolypidemic agents analogous to a-asarone,[15] herein

we describe the Friedel–Crafts reactions of activated benzene rings with

our captodative oefin 9 and other electron-deficient alkenes (8a–8c). We

also report a straightforward synthesis, based in this methodology, of the

natural compound 6.

RESULTS AND DISCUSSION

Friedel–Crafts propionylation of anisole (7a) with either methyl acrylate

(8a) or methyl vinyl ketone (8b), under anhydrous aluminum chloride, was

unsuccessful. It is well known that phenols undergo alkylation satisfactorily

under these acidic conditions only when the ring is sufficiently activated,[16]

or with highly reactive Michael acceptors such as acrylonitrile.[17] In contrast,

the captodative olefin 1-acetylvinyl-1-p-nitrobenzoate (9) reacted with 7a,

Scheme 1.

Friedel–Crafts Reaction of Activated Benzene Rings 2721
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catalyzed by BF3 . Et2O at room temperature, to give only the para isomer 10a

(Sch. 1) in 75% yield (Table 1). This behavior is different from that of capto-

dative 2-chloroacrylonitrile, which affords a mixture of alkylation

products: the para (major product) and ortho isomers and the bis adduct.[18]

The reactivity of 9 was assessed with less activated benzenes such as

benzene itself, toluene, acetanilide, and iodobenzene, under similar conditions

as before, but no condensation products were detected. It is known that only

extremely reactive Michael acceptors such as vinylidene cyanide react with

aromatic hydrocarbons similar to the above.[19]

As expected, olefin 9 reacted with veratrol (7b) even at a lower reaction

temperature (108C) than that used for 7a, providing the corresponding adduct

10b in high yield (Table 1, entry 2). However, olefins 8a and 8b did not react

with 7b even in the presence of a large excess of other catalysts (ZnCl2, TiCl4,

ZnI2, and AlCl3), different solvents (CHCl2CHCl2), temperatures (408C and

1408C), or energy sources (microwaves), and most of the starting materials

were recovered. Under any of these conditions, acrolein (8c) polymerizes

rapidly.

When compounds 10a and 10b were treated with K2CO3 in a mixture of

THF/MeOH (8 : 1), alcohols 11a and 11b were obtained in 95% and 68%

yield, respectively (Sch. 1). These alcohols were stable at room temperature

and they were purified via standard column chromatography on silica gel.

It is likely that the reactivity of benzenes activated with methoxy groups,

in the presence of Lewis acids, was low due to coordination of the catalyst

with these substituents.[13a] This hypothesis is supported by the fact that at

room temperature, compound 10b was obtained as a single product in the

presence of a large excess of catalyst (10mol equiv.), while an insepa-

rable mixture of 10b and a second product (12) was observed when only

Scheme 2.

Friedel–Crafts Reaction of Activated Benzene Rings 2723
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2mol equiv. of catalyst were added (Sch. 1). When this mixture was hydro-

lyzed, compound 13 was isolated by column chromatography. The latter

could arise from 10b through a two-step process: (a) cyclization of 10b to

intermediate 14 due to the activated benzene ring and the electrophilicity of

the carbonyl group;[20] (b) alkylation at the position of the tertiary benzylic

alcohol of 14 by a second molecule of 7b promoted by the catalyst (Sch. 2).

Resorcinol dimethyl ether (7c) would be expected to be more reactive in

Friedel-Crafts reactions due to the synergistic electron-donor effect of the two

methoxy groups. Indeed, when the reaction is carried out with methyl acrylate

(8a), catalyzed by pyrophosphoric acid or AlCl3, it proceeds in good yield to

give mono- or bis-propionate condensation products.[21] We investigated the

reaction of 7c with the captodative alkene 9 in the presence of aluminum

Scheme 3.

Scheme 4.

Aguilar, Benavides, and Tamariz2724
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chloride (Sch. 3), observing a faster condensation with respect to the exper-

iments carried out with 7a and 7b, and furnishing the mono-adduct 15 as a

single product (Table 1, entry 3); no traces of the bis adduct 16 were detected.

The significant biological activity of a- and b-asarones,[22] and of com-

pound 6,[8] which possess the 1,2,4-trimethoxyphenyl moiety, prompted us

to evaluate the reactivity of 1,2,4-trimethoxybenzene (7d) with different

Michael acceptors. Table 1 summarizes the results obtained in the conden-

sation of 7d with 8a–8c and 9 catalyzed by anhydrous AlCl3. Thus, when

8b and 8c reacted at room temperature in methylene chloride for more than

24 hr, products 17a and 17b were obtained in good yield (Sch. 4). Captodative

olefin 9 proved again to be the most reactive electrophile, since it underwent

very fast addition (30min) (Table 1, entry 8) to give 17c in high yield (Sch. 4).

Even though methyl acrylate (8a) failed to give the expected product 6 under

these conditions, the use of sym-tetrachloroethane[17] as solvent at 808C for 1

week provided 6 in 37% yield. The reaction time was shortened and the yield

improved by microwave irradiation (200W) of the same mixture in a Teflon

screw-capped glass tube at 808C for 8 hr, giving 6 in 66% yield (Table 1, entry

5). The preparation of 6 represents, at present, the shortest synthesis of this

biologically active natural product, since the previously reported syntheses,

starting from b-asarone or asaraldehyde, furnished 6 in three steps.[23]

The higher reactivity of olefin 9, when compared with that of 8a–8c, in

electrophilic aromatic substitution, may be explained on the basis of FMO

arguments.[24] The energetically more favorable interaction is expected to

be that between LUMOalkenes and HOMObenzenes. Calculation (HF/6-
31G�) of the FMO energies of compounds 8b, ethyl acrylate (8d), and 9

show that the LUMO energy of 9 is 0.4634 eV and 0.7350 eV lower than

the LUMO energies of 8b and 8d, respectively.[25]

In summary, we have shown that captodative olefin 9 is a very reactive

electrophile in Friedel-Crafts reactions catalyzed by Lewis acids, with

activated benzene substrates containing 1–3 methoxy groups. 1,2,4-Tri-

methoxybenzene (7d) undergoes electrophilic aromatic substitution with

monosubstituted electron-deficient olefins to give the mono-adduct as the

main product. An efficient and total synthesis of the natural fungicide and

antilarvarian compound 6 was accomplished in one step.

EXPERIMENTAL

General

Melting points (uncorrected) were determined with an Electrothermal

capillary melting point apparatus. IR spectra were recorded on a

Friedel–Crafts Reaction of Activated Benzene Rings 2725
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Perkin-Elmer 1600 spectrophotometer. 1H (300MHz) and 13C (75.4MHz)

NMR spectra were recorded on a Varian Gemini-300 instrument, in CDCl3
as solvent and TMS as internal standard. Mass spectra (MS) and high-resol-

ution mass spectra (HRMS) were obtained, in electron impact (EI) (70 eV)

and FAB modes, on a Hewlett-Packard 5971A and on a Jeol JMS-SX 102

spectrometers, respectively. Microanalyses were performed by M-H-W Lab-

oratories (Phoenix, AZ), and Centro de Investigaciones Quı́micas, Universi-

dad Autónoma de Hidalgo (Pachuca, Hgo., Mexico). Analytical thin-layer

chromatography was carried out using E. Merck silica gel 60 F254
(0.25mm) plates, visualizing by long- and short-wavelength UV lamps.

Microwave (MW) irradiation was performed on a SEV/MIC-1 MW reactor.

All air and moisture sensitive reactions were carried out under nitrogen

using oven-dried glassware. Methylene chloride and sym-tetrachloroethane

were freshly distilled over calcium hydride, prior to use. All other reagents

were used without further purification. Olefin 9 was prepared as reported.[14]

4-(p-Anisyl)-3-(p-nitrobenzoyloxy)-2-butanone (10a). To a solution of

0.20 g (0.85mmol) of 9 in dry CH2Cl2 (8mL), at 08C, 0.24 g (1.70mmol) of

BF2 . Et2O and 0.92 g (8.52mmol) of 7a were successively added. The mixture

was stirred at room temperature under nitrogen for 48 hr. EtOAc (75mL) was

added, and the mixture was washed with water (2 � 10mL), saturated

aqueous solution of NaHCO3 (3 � 15mL), and water until neutral. The

organic layer was dried (Na2SO4) and the solvent was removed under

vacuum. The residue was purified by column chromatography on silica gel

(6 g, hexane/EtOAc, 9 : 1) to give 0.22 g (75%) of 10a as a yellow powder:

Rf 0.7 (hexane/EtOAc, 7 : 3); mp 81–838C; IR (CH2Cl2) 1726, 1611, 1525,

1345, 1280, 1108 cm21; 1H NMR (300MHz, CDCl3) d 2.16 (s, 3H,

CH3CO), 3.14 (dd, J ¼ 13.7, 7.5 Hz, 1H, ArCH2CH), 3.24 (dd, J ¼ 13.7,

4.9Hz, 1H, ArCH2CH), 3.78 (s, 3H, OMe), 5.44 (dd, J ¼ 7.5, 4.9Hz, 1H,

ArCH2CH), 6.82–6.88 (m, 2H, ArH), 7.16–7.22 (m, 2H, ArH), 8.16–8.21

(m, 2H, ArH), 8.27–8.32 (m, 2H, ArH); 13C NMR (75.4MHz, CDCl3) d

27.1 (CH3CO), 35.9 (ArCH2CH), 55.2 (MeO), 80.4 (ArCH2CH), 114.1

(ArH), 123.6 (ArH), 127.2 (Ar), 130.3 (ArH), 130.9 (ArH), 134.6 (Ar),

150.8 (Ar), 158.8 (Ar), 164.1 (CO2Me), 204.3 (COCH3); MS (70 eV) m/z
150 (Mþ2 193, 100), 134 (5), 120 (9), 104 (36), 92 (19), 76 (27). Anal.

calcd for C18H17NO6: C, 62.97; H, 4.99; N, 4.07. Found: C, 62.81; H, 4.78;

N, 4.14.

4-(3,4-Dimethoxyphenyl)-3-(p-nitrobenzoyloxy)-2-butanone (10b). Fol-

lowing the method of preparation of 10a, with 0.10 g (0.42mmol) of 9 in dry

CH2Cl2 (5mL), 0.58 g (4.10mmol) of BF3 . Et2O and 0.29 g (2.10mmol) of

7b, and stirred at 108C for 48 hr, gave 0.135 g (85%) of 10b as a pale

yellow powder: Rf 0.3 (hexane/EtOAc, 7 : 3); mp 101–1038C; IR (CH2Cl2)

1719, 1524, 1352, 1273, 1108 cm-1; 1H NMR (300MHz, CDCl3) d 2.17

Aguilar, Benavides, and Tamariz2726
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(s, 3H, CH3CO), 3.15 (dd, J ¼ 14.4, 7.9 Hz, 1H, ArCH2CH), 3.24 (dd,

J ¼ 14.4, 5.3Hz, 1H, ArCH2CH), 3.84 (s, 3H, OMe), 3.85 (s, 3H, OMe),

5.47 (dd, J ¼ 7.9, 5.2Hz, 1H, ArCH2CH), 6.70–6.92 (m, 3H, ArH), 8.16–

8.38 (m, 4H, ArH); 13C NMR (75.4MHz, CDCl3) d 27.1 (CH3CO), 36.4

(ArCH2CH), 55.80 (MeO), 55.85 (Me), 80.2 (ArCH2CH), 111.2 (ArH),

112.3 (ArH), 121.4 (ArH), 123.6 (ArH), 127.6 (Ar), 130.8 (ArH), 134.6

(Ar), 148.2 (Ar), 148.9 (Ar), 150.7 (Ar), 164.0 (CO2Me), 204.3 (COCH3);

MS (70 eV) m/z 175 (Mþ2 197, 51), 161 (56), 150 (37), 121 (100), 104

(27), 92 (10), 76 (17). Anal. calcd for C19H19NO7: C, 61.12; H, 5.13; N,

3.75. Found: C, 61.20; H, 5.20; N, 3.62.

4-(p-Anisyl)-3-hydroxy-2-butanone (11a). To a solution of 0.10 g

(0.27mmol) of 10a in dry THF (8mL), at 08C, 0.91 g (6.6mmol) of K2CO3

in dry MeOH (1mL) were added. The mixture was stirred at room temperature

under nitrogen for 15min. EtOAc (60mL) was added and the mixture was

washed with water until neutral. The organic layer was dried (Na2SO4) and

the solvent was removed under vacuum. The residue was purified by

column chromatography on silica gel (3 g, hexane/EtOAc, 8 : 2) to give

0.054 g (95%) of 11a as a pale yellow oil: Rf 0.62 (hexane/EtOAc, 7 : 3);
IR (film) 3465, 1714, 1611, 1513, 1357, 1300, 1247, 1178, 1111, 1086,

1032 cm21; 1H NMR (300MHz, CDCl3) d 2.20 (s, 3H, CH3CO), 2.84 (dd,

J ¼ 14.3, 7.1 Hz, 1H, ArCH2CH), 3.09 (dd, J ¼ 14.3, 4.7Hz, 1H,

ArCH2CH), 3.38 (br s, 1H, OH), 3.78 (s, 3H, OMe), 4.36–4.39 (m, 1H,

ArCH2CH), 6.81–6.86 (m, 2H, ArH), 7.10–7.26 (m, 2H, ArH); 13C NMR

(75.4MHz, CDCl3) d 25.8 (CH3CO), 39.1 (ArCH2CH), 55.2 (MeO), 77.8

(ArCH2CH), 114.0 (ArH), 128.4 (Ar), 130.2 (ArH), 158.6 (Ar), 209.2

(COCH3); MS (70 eV) m/z 194 (Mþ, 10), 176 (1), 121 (100), 107 (4), 91

(15), 77 (13). HRMS (FABþ) [Mþ] (mNBA) calcd for C11H14O3: 194.0943.

Found: 194.0948.

4-(3,4-Dimethoxyphenyl)-3-hydroxy-2-butanone (11b). Following the

method of preparation of 11a, with 0.11 g (0.29mmol) of 10b, and 0.91 g

(6.6mmol) of K2CO3, and stirring at room temperature for 24 hr, gave

0.045 g (68%) of 11b as a yellow oil: Rf 0.18 (hexane/EtOAc, 7 : 3); IR
(CH2Cl2) 3498, 1708, 1512, 1261, 1136, 1027 cm21; 1H NMR (300MHz,

CDCl3) d 2.21 (s, 3H, CH3CO), 2.84 (dd, J ¼ 14.3, 7.1Hz, 1H, ArCH2CH),

3.10 (dd, J ¼ 14.3, 4.7Hz, 1H, ArCH2CH), 3.41 (br s, 1H, OH), 3.86 (s, 3H,

OMe), 3.87 (s, 3H, OMe), 4.36–4.43 (m, 1H, ArCH2CH), 6.72–6.82 (m,

3H, ArH); 13C NMR (75.4MHz, CDCl3) d 25.8 (CH3CO), 39.5

(ArCH2CH), 55.88 (MeO), 55.89 (MeO), 77.7 (ArCH2CH), 111.4 (ArH),

112.7 (ArH), 121.2 (ArH), 129.0 (Ar), 148.2 (Ar), 149.1 (Ar), 209.1

(COCH3); MS (70 eV) m/z 224 (Mþ, 5), 151 (100), 137 (5), 121 (4), 107

(8), 91 (4), 77 (5). HRMS (FABþ) [Mþ] (mNBA) calcd for C12H16O4:

224.1049. Found: 224.1045.
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1-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-1-methyl-2-indanol (13). Fol-

lowing the method of preparation of 10a, with 0.10 g (0.42mmol) of 9 in dry

CH2Cl2 (5mL), 0.12 g (0.84mmol) of BF3 . Et2O, and 0.29 g (2.1mmol) of 7b,

and stirring the mixture for 24 hr, gave a crude which was purified by column

chromatography on silica gel (10 g, hexane/EtOAc, 8 : 2). Hydrolysis of the
resultant product following the method of preparation of 11a, yielded 0.04 g

(27%) of 13 as a white powder: Rf 0.22 (hexane/EtOAc, 6 : 4); mp 65–

678C; IR (film) 3502, 1606, 1505, 1463, 1407, 1297, 1252, 1208, 1143,

1080, 1027 cm21; 1H NMR (300MHz, CDCl3) d 1.55 (s, 3H, CH3), 1.87

(br s, 1H, OH), 2.79 (dd, J ¼ 15.4, 6.3 Hz, 1H, H-3), 3.12 (dd, J ¼ 15.4,

6.3Hz, 1H, H-3), 3.77 (s, 3H, OMe), 3.79 (s, 3H, OMe), 3.86 (s, 3H, OMe),

3.90 (s, 3H, OMe), 4.44 (t, J ¼ 6.3Hz, 1H, H-2), 6.53 (s, 1H, ArH), 6.69–

6.80 (m, 3H, ArH), 6.82 (s, 1H, ArH); 13C NMR (75.4MHz, CDCl3) d 19.8

(CH3), 38.3 (C-3), 55.4 (C-1), 55.8 (2MeO), 55.9 (MeO), 56.1 (MeO), 83.8

(C-2), 107.7 (ArH), 108.0 (ArH), 110.6 (2Ar), 119.1 (ArH), 131.1 (Ar),

139.6 (Ar), 140.6 (Ar), 147.5 (Ar), 148.5 (Ar), 148.60 (Ar), 148.62 (Ar);

MS (70 eV) m/z 344 (Mþ, 35), 329 (8), 301 (14), 191 (100), 165 (20), 163

(22), 151 (20), 115 (7), 91 (6), 77 (6). HRMS (FABþ) [Mþ] (mNBA) calcd

for C20H24O5: 344.1624. Found: 344.1622.

4-(2,4-Dimethoxyphenyl)-3-(p-nitrobenzoyloxy)-2-butanone (15). Fol-

lowing the method of preparation of 10a, with 0.102 g (0.43mmol) of 9 in dry

CH2Cl2 (5mL), 0.058 g (0.43mmol) of AlCl3 and 0.06 g (0.43mmol) of 7c,

gave 0.12 g (75%) of 15 as a pale yellow powder: Rf 0.76 (hexane/EtOAc,
7 : 3); mp 67–698C; IR (CH2Cl2) 1719, 1610, 1587, 1526, 1464, 1345,

1208, 1115, 1102, 1034, 837, 719 cm21; 1H NMR (300MHz, CDCl3) d

2.23 (s, 3H, CH3CO), 3.04 (dd, J ¼ 14.1, 8.1Hz, 1H, ArCH2CH), 3.30 (dd,

J ¼ 14.1, 5.2 Hz, 1H, ArCH2CH), 3.78 (s, 3H, OMe), 3.80 (s, 3H, OMe),

5.48 (dd, J ¼ 8.1, 5.2Hz, 1H, ArCH2CH), 6.40–6.43 (m, 3H, ArH), 7.10

(d, J ¼ 8.1Hz, 1H, ArH), 8.14–8.28 (m, 4H, ArH); 13C NMR (75.4MHz,

CDCl3) d 26.8 (CH3CO), 31.0 (ArCH2CH), 55.2 (MeO), 55.3 (MeO), 79.2

(ArCH2CH), 98.4 (ArH), 104.0 (ArH), 115.9 (Ar), 123.5 (ArH), 130.8

(ArH), 131.5 (ArH), 134.9 (Ar), 150.5 (Ar), 158.2 (Ar), 160.3 (Ar), 164.0

(CO2Me), 204.1 (COCH3); MS (70 eV) m/z 373 (Mþ, 3), 206 (30), 191

(23), 175 (43), 151 (100), 121 (24), 104 (16), 76 (10). HRMS (FABþ) [Mþ]

(mNBA) calcd for C19H19NO7: 373.1162. Found: 373.1162.

4-(2,4,5-Trimethoxyphenyl)-2-butanone (17a).[26] To a solution of

0.25 g (1.49mmol) of 7d in dry CH2Cl2 (5mL), at 08C under nitrogen,

0.20 g (1.49mmol) of AlCl3 and 1.043 g (14.9mmol) of 8b were successively

added. The mixture was stirred at room temperature for 30 hr. EtOAc (75mL)

was added, and the mixture was washed with water (2 � 10mL), saturated

aqueous solution of NaHCO3 (3 � 15mL), and water until neutral. The

organic layer was dried (Na2SO4) and the solvent was removed under
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vacuum. The residue was purified by column chromatography on silica gel

(10 g, hexane/EtOAc, 9 : 1) to give 0.276 g (78%) of 17a as a yellow

powder: Rf 0.74 (hexane/EtOAc, 7 : 3); mp 52–548C; IR (CH2Cl2) 1708,

1609, 1512, 1459, 1399, 1359, 1315, 1273, 1201, 1120, 1031, 853,

821 cm21; 1H NMR (300MHz, CDCl3) d 2.14 (s, 3H, CH3CO), 2.66–2.74

(m, 2H, ArCH2CH2CO), 2.77–2.85 (m, 2H, ArCH2CH2CO), 3.80 (s, 3H,

OMe), 3.83 (s, 3H, OMe), 3.88 (s, 3H, OMe), 6.51 (s, 1H, ArH), 6.71

(s, 1H, ArH); 13C NMR (75.4MHz, CDCl3) d 24.5 (ArCH2CH2CO), 29.9

(CH3CO), 44.1 (ArCH2CH2CO), 56.11 (MeO), 56.15 (MeO), 56.5 (MeO),

97.5 (ArH), 114.2 (ArH), 120.6 (Ar), 142.6 (Ar), 147.8 (Ar), 151.4 (Ar),

208.8 (COCH3); MS (70 eV) m/z 238 (Mþ, 59), 223 (6), 196 (7), 181

(100), 151 (28), 136 (6), 121 (4), 91 (4), 77 (5). Anal. calcd for C13H18O4:

C, 65.53; H, 7.61. Found: C, 65.55; H, 7.41.

3-(2,4,5-Trimethoxyphenyl)propionaldehyde (17b).[27] Following the

method of preparation of 17a, with 0.834 g (14.9mmol) of 8c, and stirring

for 24 hr, gave 0.25 g (75%) of 17b as a pale yellow oil: Rf 0.72 (hexane/
EtOAc, 7 : 3); IR (CH2Cl2) 1717, 1608, 1511, 1459, 1397, 1316, 1202,

1119, 1030, 859 cm21; 1H NMR (300MHz, CDCl3) d 2.70 (br t,

J ¼ 7.3Hz, 2H, ArCH2CH2CO), 2.88 (t, J ¼ 7.3Hz, 2H, ArCH2CH2CO),

3.80 (s, 3H, OMe), 3.83 (s, 3H, OMe), 3.88 (s, 3H, OMe), 6.51 (s, 1H,

ArH), 6.71 (s, 1H, ArH), 9.80 (s, 1H, CHO); 13C NMR (75.4MHz, CDCl3)

d 23.0 (ArCH2CH2CO), 44.2 (ArCH2CH2CO), 56.0 (MeO), 56.1 (MeO),

56.6 (MeO), 97.4 (ArH), 114.1 (ArH), 119.8 (Ar), 142.6 (Ar), 148.0 (Ar),

151.3 (Ar), 202.6 (CHO); MS (70 eV) m/z 224 (Mþ, 59), 209 (4), 181

(100), 168 (35), 151 (34), 136 (11), 121 (9), 91 (9), 77 (14). Anal. calcd for

C12H16O4: C, 64.27; H, 7.19. Found: C, 64.18; H, 6.95.

3-(p-Nitrobenzoyloxy)-4-(2,4,5-trimethoxyphenyl)-2-butanone (17c). Fol-

lowing the method of preparation of 17a, with 0.348 g (1.49mmol) of 9, and

stirring for 30min, gave 0.486 g (81%) of 17c as a yellow powder: Rf 0.71

(hexane/EtOAc, 7 : 3); mp 77–798C; IR (CH2Cl2) 1719, 1608, 1522, 1464,

1439, 1401, 1344, 1279, 1214, 1224, 1118, 1102, 1014, 853, 718 cm21; 1H

NMR (300MHz, CDCl3) d 2.22 (s, 3H, CH3CO), 3.06 (dd, J ¼ 14.1,

8.1 Hz, 1H, ArCH2CH), 3.31 (dd, J ¼ 14.1, 5.1 Hz, 1H, ArCH2CH), 3.80

(s, 3H, OMe), 3.81 (s, 3H, OMe), 3.88 (s, 3H, OMe), 5.49 (dd, J ¼ 8.1,

5.1 Hz, 1H, ArCH2CH), 6.51 (s, 1H, ArH), 6.74 (s, 1H, ArH), 8.15–8.19

(m, 2H, ArH), 8.26–8.30 (m, 2H, ArH); 13C NMR (75.4MHz, CDCl3) d

26.9 (CH3CO), 31.1 (ArCH2CH), 55.9 (MeO), 56.1 (Me), 56.6 (MeO), 79.3

(ArCH2CH), 96.9 (ArH), 114.6 (ArH), 115.2 (Ar), 123.5 (ArH), 130.8

(ArH), 134.9 (Ar), 142.6 (Ar), 149.0 (Ar), 150.6 (Ar), 151.7 (Ar), 164.0

(CO2Me), 204.1 (COCH3); MS (70 eV) m/z 403 (Mþ, 9), 236 (8), 205 (54),

181 (100), 151 (21), 150 (20), 136 (7), 104 (12), 76 (6). HRMS (FABþ)

[Mþ] (mNBA) calcd for C20H21NO8: 403.1267. Found: 403.1270.
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Methyl 3-(2,4,5-trimethoxyphenyl)propionate (6).[8] Method A: Fol-

lowing the method of preparation of 17a, with 1.28 g (14.9mmol) of 8a
(adding in 1mol equiv. each portion every 3 hr) in sym-tetrachloroethane as

solvent (7mL), and stirring for 1 week, gave 0.14 g (37%) of 6 as a white

gum. Method B: Following method A, stirring under MW irradiation

(200W) to 808C for 8 hr in a Teflon screw-capped ACE pressure tube, gave

0.249 g (66%) of 6 as a white gum. Rf 0.69 (hexane/EtOAc, 7 : 3); mp 50–

528C; IR (CH2Cl2) 1733, 1609, 1513, 1444, 1399, 1312, 1290, 1204, 1123,

1034, 850 cm21; 1H NMR (300MHz, CDCl3) d 2.56 (t, J ¼ 7.8Hz, 2H,

ArCH2CH2CO), 2.85 (t, J ¼ 7.8Hz, 2H, ArCH2CH2CO), 3.64 (s, 3H,

CO2Me), 3.78 (s, 3H, OMe), 3.80 (s, 3H, OMe), 3.85 (s, 3H, OMe), 6.48

(s, 1H, ArH), 6.69 (s, 1H, ArH); 13C NMR (75.4MHz, CDCl3) d 25.6 (ArCH2-

CH2CO), 34.4 (ArCH2CH2CO), 51.4 (CO2CH3), 56.05 (MeO), 56.10 (MeO),

56.5 (MeO), 97.4 (ArH), 114.1 (ArH), 120.1 (Ar), 142.6 (Ar), 147.9 (Ar),

151.4 (Ar), 173.7 (CO2CH3); MS (70 eV) m/z 254 (Mþ, 41), 239 (10), 211

(6), 181 (100), 151 (29), 121 (4), 91 (3), 77 (5). HRMS (FABþ) [Mþ]

(mNBA) calcd for C13H18O5: 254.1154. Found: 254.1161.
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