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Abstract—Reduction of enantiopure N-p-toluenesulfinyl ketimines derived from 2-pyridyl ketones affords N-p-toluenesulfinyl
amines with good yields and diastereoselectivities.
� 2005 Elsevier Ltd. All rights reserved.
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Figure 1.
In some recent reports, we have pointed out that ruthe-
nium(II) complexes having achiral 2-pyridyl amines as
co-ligands, namely RuCl[(2-CH2–6-MeC6H3)PPh2]-
(CO)(L),1a,b cis-RuCl2(PP)(L)

1c (L = 1-(pyridin-2-yl)-
methylamine; PP = diphosphine) and RuCl(CNN)-
[Ph2P(CH2)4PPh2] (HCNN = 1-(6-phenylpyridin-2-yl)-
methylamine),2 exhibit high activity in transfer hydroge-
nation of ketones in 2-propanol. In order to prepare the
related chiral 2-pyridyl amine metal complexes, we
required a practical procedure for accessing chiral
nonracemic 1-substituted-1-(pyridin-2-yl)methylamines.
Among the approaches,3 we considered the diastereo-
selective reduction of enantiopure pyridyl imines derived
from 2-pyridyl ketones.4 For this purpose the proper
choice of the nitrogen chiral substituent is of crucial
importance, since it not only must enable the prepara-
tion of stable imine, but also must be inexpensive and
straightforward to remove without loss of optical purity
from the amine product. The N-p-toluenesulfinyl substi-
tuent pioneered by Davis and co-workers5 satisfies many
of these criteria.6 Moreover, high diastereofacial selec-
tivity has been obtained in the reduction of N-p-toluene-
sulfinyl ketimines derived from both dialkyl and aryl
alkyl ketones.7,8 Therefore, we sought to adapt this pro-
cedure to our specific needs (Fig. 1).
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Herein, we report the preliminary results obtained in the
reduction of a number of chiral N-p-toluenesulfinamides
2 derived from 2-pyridyl ketones 3 (Scheme 1).

N-p-Toluenesulfinyl ketimines (SS)-2a–f were obtained
by condensation of commercially available (S)-(+)-p-tolu-
enesulfinamide (SS)-4 (1 equiv) with a series of 2-pyridyl
ketones 3a–f (1.1 equiv) with varying steric and elec-
tronic demand about the carbonyl. The reactions were
performed9 employing Ti(OEt)4 (2 equiv) in CH2Cl2 at
40 �C for 2a (45%) and 2b (37%) or THF at 70 �C for
2c (40%), 2d (75%), 2e (34%) and 2f (67%). All imines
were obtained as a single isomer as determined by the
1H NMR spectra.

The reduction of (SS)-2a–fwith three hydride transfer re-
agents under a variety of conditions was examined (Table
1). The extent of the asymmetric induction was deter-
mined directly by 1H NMR on the diastereoisomeric
mixture of sulfinamides 5a–f. All reductions were initially
carried out using NaBH4,

10 which afforded good yields of
the sulfinamides 5a–f, but low diastereoselectivities.
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Table 1. Reduction of (SS)-2a–g

Entry Compound Reducing agent/conditions Reaction time (h) Ratioa (SS,R):(SS,S)-5 Yieldb (%)

1 2a NaBH4, MeOH, 25 �C 1 55:45 95

2 2a L-Selectride, THF, �78 �C 3 74:26 77

3 2a L-Selectride, THF, 0 �C 3 68:32 75

4 2a DIBAL, THF, �78 �C 6 16:84 90

5 2b NaBH4, MeOH, 25 �C 1 47:53 —

6 2b L-Selectride, THF, �78 �C 3 97:3 77

7 2b DIBAL, THF, �78 �C 6 71:29 87

8 2c NaBH4, MeOH, 25 �C 1 53:47 95

9 2c L-Selectride, THF, �78 �C 10 — No reaction

10 2c L-Selectride, THF, 0 �C 24 1:1 40

11 2c DIBAL, THF, �78 �C 6 96:4 92

12 2c DIBAL, THF, �20 �C 6 92:8 91

13 2c DIBAL, THF, 25 �C 6 92:8 45

14 2d NaBH4, MeOH, 25 �C 1 54:46 88

15 2d L-Selectride, THF, �78 �C 3 67:33 93

16 2d DIBAL, THF, �78 �C 6 60:40 91

17 2e NaBH4, MeOH, 25 �C 1 1:1 87

18 2e L-Selectride, THF, �78 �C 3 71:29 32

19 2e DIBAL, THF, �78 �C 24 1:1 40

20 2f NaBH4, MeOH, 25 �C 1 1:1 89

21 2f L-Selectride, THF, �78 �C 10 75:25 35

22 2f DIBAL, THF, �78 �C 24 — No reaction

23 2f DIBAL, THF, �20 �C 48 72:28 57

24 2g DIBAL, THF, �78 �C 6 <2:>98 90

a Ratio of the crude reaction mixture determined by 1H NMR.
b Isolated yields.

N

O

R

NH2

R
N

p-Tolyl
S

N
H

O R

N
H

p-Tolyl
S

NH2

O

NH2

R

p-Tolyl
S

N
H

O R

N
H

p-Tolyl
S

N

O

(SS)-43a-g

a
+

+

(SS)-2a-g

(SS,S)-5a-g(SS,S)-5a-g

(R)-1a-g(S)-1a-g

c

b

+

N

N

R

R1

R1

R1 R1

R1 R1

a: R = Me, R1 = H; b: R = i-Pr, R1 = H; c: R = t-Bu, R1 = H; d: R = Ph, R1 = H
e: R = 2-furyl, R1 = H; f: R = 2-thienyl, R1 = H; g: R = Me, R1 = Br.

Scheme 1. Reagents and conditions: (a) Ti(OEt)4, CH2Cl2 (40 �C) or THF (70 �C), 24–36 h, 34–75%; (b): Table 1; (c) CF3COOH, MeOH, rt, 6 h.
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Using L-Selectride11 or DIBAL,12 yields and diastereose-
lectivities were greatly dependent on the nature of the sub-
stituent on the imino moiety. Thus, with 2a (R = Me)
higher selectivity was obtained with DIBAL (68% de),
whereas L-Selectride was the better stereoselective reduc-
ing agent with 2b (R = iso-propyl) (94% de). Moreover,
with DIBAL as the reducing agent, the diastereoselectiv-
ity was reversed in going from 2a to 2b, yielding (SS,R)-5
as the major isomer in the reduction of 2b. L-Selectride
gave no reaction with 2c (R = tert-butyl) whereasDIBAL
gave high yield and diastereoselectivity (up to 92% de),
with minimal effect of reaction temperature on the stere-
oselective outcome. With 2d and 2f (R = phenyl and thi-
enyl, respectively) both L-Selectride and DIBAL gave
similar stereochemical results (up to 50% de). Finally,
with 2e (R = furyl) diastereoselective reduction occurred
only with L-Selectride (42% de).

In order to determine the configuration of the new ste-
reocentre in the reduction products, an enriched mixture
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of the diastereoisomers of 5a,b and 5d was converted
(CF3COOH, MeOH, rt, 6 h, 85–90%)13 to the optically
active amines 1a,14 1b15 and 1d,14 respectively, for which
the correlation between configuration and sign of the
optical rotation has previously been established. In this
way, it has been possible to determine that in the 1H
NMR spectra the resonances of the protons at the 6-
position of the pyridine ring of the (SS,R)-diastereomers
of 5a,b and 5d are shifted downfield with respect to those
of the related (SS,S)-diastereomers. By analogy, the con-
figurations to the diastereomers of 5c and 5e–g have
been tentatively assigned.

It has been reported than the diastereoselectivity
of addition reactions involving functionalised pyridines
depends on the position of the functional group with
respect to the pyridine nitrogen. For instance, the
Michael addition of chiral nonracemic lithium amides
to tert-butyl 3-(pyridin-3-yl)- and 3-(pyridin-4-yl)prop-
2-enoates afforded the addition product in good yields
and diastereoselectivities (84%), whereas the application
of this methodology to the analogous b-2-pyridyl system
afforded very low levels of stereoselectivity (6% de) unless
the pyridine ring was also substituted at the 6-position.16

In order to probe the influence on the diastereoselectivity
of a substituent at the 6-position of the pyridine ring in
our system, the 4-methyl-N-[1-(6-bromopyridin-2-yl)eth-
ylidene]benzenesulfinamide (SS)-2g was prepared in the
usual way (Ti(OEt)4, THF, 60 �C, 4 h, 85%) from 1-(6-
bromopyridin-2-yl)ethanone (3g). Reduction of 2g with
DIBAL at �78 �C afforded a 1.5:98.5 mixture of diaste-
reomers. The increase in facial selectivity observed upon
reduction relative to the unsubstituted system 2a, ap-
pears to indicate that the group at the 6-position of the
pyridine ring serves to sterically impede the competing
coordination of the pyridyl nitrogen to the aluminium.
This reduced coordination to the pyridyl nitrogen would
then minimise disruption of the normal chelation-con-
trolled transition state,7a,8 thus disfavouring the compet-
ing nonstereoselective pathway for the reduction.

In conclusion, we have developed a method for the prep-
aration of 2-pyridyl amines with moderate to good dia-
stereoselectivities. This procedure, which complements
existing ones, has been particularly successful for the
preparation of a tert-butyl substituted pyridyl amine,
where all other methods failed. Moreover, the finding
that 1-substituted N-toluenesulfinyl 1-(6-bromopyridin-
2-yl)methylamines (such as 5g) can be obtained with
very high diastereoselectivity and the consideration that
the N-toluenesulfinyl group can be considered as a N-
protecting group,17 should allow for further elaboration
of the 6-bromo substituent (e.g., via Ni(0)-catalysed
homocoupling, Suzuki-type heterocoupling, etc.). Fur-
ther studies on this subject are currently in progress.
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