
This article was downloaded by: [University of Arizona]

On: 10 July 2013, At: 01:58 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

Synthesis of 2-Aminoaryl-5-Substituted-1,3,4- Thiadiazoles in a Thermal 1,3-Dipolar Cycloaddition Reaction

Katarzyna Gobis ^a , Henryk Foks ^a , Zofia Zwolska ^b & Ewa Augustynowicz-Kopeć ^b

Published online: 19 Aug 2006.

To cite this article: Katarzyna Gobis , Henryk Foks , Zofia Zwolska & Ewa Augustynowicz-Kope (2005) Synthesis of 2-Aminoaryl-5-Substituted-1,3,4- Thiadiazoles in a Thermal 1,3-Dipolar Cycloaddition Reaction, Phosphorus, Sulfur, and Silicon and the Related Elements, 180:12, 2653-2666, DOI: 10.1080/104265090930399

To link to this article: http://dx.doi.org/10.1080/104265090930399

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the

^a Department of Organic Chemistry, Medical University of Gdansk, Gdansk, Poland

^b Department of Microbiology, Institute of Tuberculosis and Pulmonary Diseases, Warsaw, Poland

Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Phosphorus, Sulfur, and Silicon, 180:2653-2666, 2005

Copyright © Taylor & Francis Inc. ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/104265090930399

Synthesis of 2-Aminoaryl-5-Substituted-1,3,4-Thiadiazoles in a Thermal 1,3-Dipolar Cycloaddition Reaction

Katarzyna Gobis Henryk Foks

Department of Organic Chemistry, Medical University of Gdansk, Gdansk, Poland

Zofia Zwolska Ewa Augustynowicz-Kopeć

Department of Microbiology, Institute of Tuberculosis and Pulmonary Diseases, Warsaw, Poland

The preparation of a series of new 2-aminoaryl-1,3,4-thiadiazoles substituted with methylsulfanyl, methansulfinyl, or amine in the 5-position is described in this article. The compounds were obtained from N-hydroxyimidoyl chlorides and methyl dithiocarbazinate or 4-substituted thiosemicarbazides in a thermal 1,3-dipolar cycloaddition reaction. The new derivatives were tested for their activity against Mycobacterium tuberculosis.

Keywords 1,3-Dipolar cycloaddition; 1,3,4-thiadiazoles; 4-substituted thiosemicarbazides; antituberculosis activity; hydroxamoyl chlorides; methyl dithiocarbazinate

INTRODUCTION

Many 1,3,4-thiadiazole derivatives show various pharmacological activities, including antibacterial, antifungal, and antituberculosis activity. It is also well documented that some agents possessing a pyrazine or pyridine ring, such as pyrazinamide and isoniazide, are very effective antituberculosis drugs.

These facts prompted us to synthesize 1,3,4-thiadiazoles substituted with pyrazine or a pyridine moiety in the 2-position. The 2-amino-5-aryl-1,3,4-thiadiazoles already have been obtained from

Received November 30, 2004; in final form December 14, 2004.

Address correspondence to Katarzyna Gobis, Medical University of Gdansk, Department of Organic Chemistry, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland. E-mail: katarzyna.gobis@wp.pl

arylthiosemicarbazones⁴ or by direct cyclization of carboxylic acid and thiosemicarbazide in phosphorus oxychloride.⁵ Reaction of the aromatic hydroxamoyl chlorides with methyl dithiocarbazinate also was described as a method of 2-aminoaryl-1,3,4-thiadiazole obtainment.^{6,7} However, the cyclization reactions of hydroxamoyl chlorides with 4-amino-substituted thiosemicarbazides have not been reported yet.

In this work, a series of 2-aminopyrazinyl-, 2-pyridin-2-, 3- or 4-yl- and 1-oxy-isonicotin-1,3,4-thiadiazole-5-sulfides, sulfoxides, and amines were synthesized and evaluated for in vitro antituberculosis activity.

RESULTS AND DISCUSSION

The required compounds were obtained according to the reaction sequences outlined in Scheme 1. Hydroxamoyl chlorides were used as starting material. *N*-hydroxypyrazinecarboximidoyl, *N*-hydroxypyridinecarboximidoyl, and 1-oxy-isonicotincarboximidoyl chlorides were prepared from the corresponding amidoximes on treatment with sodium nitrite in hydrochloric acid solution at 0°C. That method has been published by Kočevar and colleagues as a simple procedure for the synthesis of pyridinecarbohydroximoyl chlorides.⁸

Hydroxamoyl chlorides were refluxed in ethanol with two equivalent amounts of methyl dithiocarbazinate, giving 2-aminoaryl-5-methylsulfanyl-1,3,4-thiadiazoles **1–5**. Methyl dithiocarbazinate was obtained by the method of Kleyman and colleagues⁹ from hydrazine, potassium hydroxide, carbon disulfide, and methyl iodide in water-isopropanol solution. The products of condensation reactions formed with moderated yields. Similar syntheses were described by Dornow and Fischer.⁶ The products that were obtained suggest that this kind of reaction is a thermal 1,3-cycloaddition (Scheme 2(a)). That mechanism is typical for all hydroxamoyl chlorides. However, Sasaki and Yoshioka⁷ reported that some of these compounds can give 2-aryl-5-methylsulfanyl-1,3,4-thiadiazole as a second product, which is a result of a simple substitution reaction followed by hydroxylamine elimination (Scheme 2(b)). We did not obtain the second kind of products.

Subsequent oxidation of sulfides **1–5** using an excess of 30% hydrogen peroxide and glacial acetic acid gave sulfoxides **6–10**. The yields of these reactions were rather good, and sulfoxides isolation was very easy. Further oxidation resulted in sulfones, which were formed next to other products, and finally their synthesis was given up.

4-substituted thiosemicarbazides **11–17**, the intermediates employed for the syntheses of corresponding 2-amino-5-aminoaryl-1,3,

SCHEME 1

4-thiadiazoles **18–34**, were prepared by the procedure of Agrawal and colleagues. ¹⁰ The various amines, such as pyrrolidine, piperidine, hexamethyleneimine, morpholine, 1-phenylpiperazine, 1-benzylpiperazine, and 1-(2-pyridyl)piperazine, that were used for the nucleophilic substitution of methyl dithiocarbazinate were commercially obtained. For more basic amines, water was a suitable solvent, but for 1-phenylpiperazine and its derivatives, reactions were carried

A

R—C

CI

$$H_2N-NH$$

SCH₃

N=O

SCH₃

NHNH₂

R=NH

NH-NH

SCH₃

R=NH

NH

SCH₃

R=NH

NH

SCH₃

R=NH

NH

SCH₃

R=NH

NH

SCH₃

R=NH

SCH₃

R=

SCHEME 2

out in ethanol. The yields of the reactions were not very high, although amines were used in large excess to methyl dithiocarbazinate (3:1). This fact prompted us to work out another method for these syntheses, which will be a subject of a future article.

The reactions of *N*-hydroxyimidoyl chlorides with two equivalent amounts of 4-(1-phenylpiperazino)thiosemicarbazide **15** gave the desired 2-aminoaryl-5-phenylpiperazino-1,3,4-thiadiazoles **22**, **29**, and **32–34**. The syntheses were performed in refluxing DMF and the reaction yields presented similar tendency as obtained for the appropriate sulfides **1–5**. The structures of the products led us to conclude that these reactions also follow the thermal 1,3-dipolar cycloaddition mechanism, as maintained for the sulfides **1–5** obtainment.

Treatment of *N*-hydroxypyrazine and *N*-hydroxy-2-pyridinecarboximidoyl chlorides with 6 other 4-substituted thiosemicarbazides **11–14**, **16**, and **17** under similar reaction conditions resulted in the formation of 2-amino-5-aminopyrazin-2-yl- or 5-aminopyridin-2-yl-1,3, 4-thiadiazoles **18–21**, **23–28**, **30**, and **31**.

The synthesized 1,3,4-thiadiazoles were examined for their tuberculostatic activity towards the *Mycobacterium tuberculosis* $H_{37}Rv$ strain and two "wild" strains isolated from tuberculotic patients: one (Spec. 210) was resistant to p-aminosalicic acid, isonicotinic acid hydrazide, etambutol and rifampicine, another (Spec. 192) was fully sensitive to the administrated drugs. The determined minimum concentrations inhibiting the growth of tuberculous strains for all of the tested compounds were within the limits 50–100 $\mu g/mL$, which indicates low antituberculosis activity.

EXPERIMENTAL

All materials and solvents were of an analytical reagent grade. Thin-layer chromatography was performed on Merck Kieselgel $60F_{254}$ plates and visualized with UV. The results of elemental analyses (%C, H, N, S) for all the compounds obtained were in good agreement with the data that was calculated. Reaction yields and the physical constants of the compounds are given in Tables I and II. 1H NMR spectra in DMSO-d₆ were recorded on Varian Unity Plus (500 MHz) and Varian Gemini (200 MHz) instruments. IR Spectra (KBr) were determined as KBr pellets of the solids on a Satellite FT-IR spectrophotometer (Table III). Mass spectra for compounds 1, 6, and 22 were taken on Finnigan MAT 95 by a chemical ionization method with isobutane. Melting points were determined on a BOETIUS apparatus and were uncorrected.

2-Aminoaryl-5-Methylsulfanyl-1,3,4-Thiadiazoles (1-5)

A solution of 5 mmol of appropriate hydroxamoyl chloride and 11 mmol of methyl dithiocarbazinate in 30 mL of ethanol was refluxed for 12 h. After cooling, the precipitate was filtered, washed with cold ethanol, and recrystallized. For compound 1, a mass spectrum was taken. MS: $(m/z) = 226 (100 \text{ MH}^+), 227 (11), \text{ and } 268 (4).$

2-Aminoaryl-5-Methansulfinyl-1,3,4-Thiadiazoles (6-10)

A quantity of 1 mmol of appropriate 5-methylsulfanylthiadiazole (1–5) was suspended in 3 mL of glacial acetic acid. Next, 3 mL of 30% of $\rm H_2O_2$ was added dropwise. The reaction mixture was heated for 2.5–7 h at 50°C with stirring. The reaction progress was controlled by TLC method. Then the mixture was neutralized with a saturated NaHCO₃

TABLE I Physical Constants of Het—NH

	•			S ''	
Compound no.	Het	R	Yield [%]	M.p.[°C] solvent for crystallization	Formula MW
1	N=N-	SCH_3	47	250–251 Pyridine-ethanol	$C_7H_7N_5S_2$ 225.29
2	<	SCH_3	38	236–237 Pyridine-ethanol	$\begin{array}{c} C_8 H_8 N_4 S_2 \\ 224.29 \end{array}$
3	N	SCH_3	34	215–216 Ethanol	$\begin{array}{c} C_8 H_8 N_4 S_2 \\ 224.29 \end{array}$
4		SCH_3	20	213–214 Ethanol	$\begin{array}{c} C_8 H_8 N_4 S_2 \\ 224.29 \end{array}$
5	0-N	SCH_3	54	236–237 DMF	$\begin{array}{c} {\rm C_8H_8N_4OS_2} \\ {\rm 240.29} \end{array}$
6	N=N	SOCH_3	91	249–250 Pyridine-ethanol	$C_7H_7N_5OS_2$ 241.29
7		SOCH_3	88	235–236 Pyridine-ethanol	$\begin{array}{c} C_8 H_8 N_4 OS_2 \\ 240.29 \end{array}$
8	N	$SOCH_3$	63	210–211 Ethanol	$\begin{array}{c} C_8 H_8 N_4 OS_2 \\ 240.29 \end{array}$
9	N	SOCH_3	35	218–219 Ethanol-water	$\begin{array}{c} {\rm C_8H_8N_4OS_2} \\ {\rm 240.29} \end{array}$
10	0-N	$SOCH_3$	61	150–151 DMF	$\begin{array}{c} C_8 H_8 N_4 O_2 S_2 \\ 256.29 \end{array}$
18		-N	28	225–226 DMF	$\substack{C_{10}H_{12}N_6S\\248.31}$
19	N=N	_N	44	216–217 DMF	$\substack{C_{11}H_{14}N_6S\\262.33}$
20	N=N	-N	37	230–231 DMF-water	$\substack{\text{C}_{12}\text{H}_{16}\text{N}_6\text{S}\\276.36}$

TABLE I Physical Constants of Het—NH—R (Continued)

				9 11	
Compo no.	und Het	R	Yield [%]	$\begin{array}{c} M.p. [^{\circ}C] \ solvent \\ for \ crystallization \end{array}$	Formula MW
21	N=N	− N_0	40	230–231 Pyridine-ethanol	$^{\mathrm{C}_{10}\mathrm{H}_{12}\mathrm{N}_{6}\mathrm{OS}}_{264.31}$
22	N=N	-N_N	47	302–303 Pyridine-ethanol	${ m C_{16}H_{17}N_7S} \ 339.41$
23	N=	N-CH ₂	23	226–228 Pyridine-ethanol	${ m C_{17}H_{19}N_7S} \ 353.43$
24	N=_N	-N_N-_\	36	223–224 Pyridine-ethanol	${^{\mathrm{C}}_{15}\mathrm{H}_{16}\mathrm{N}_{8}\mathrm{S}}\atop{340.40}$
25		-N	30	240–241 DMF/water	$\substack{\text{C}_{11}\text{H}_{13}\text{N}_5\text{S}\\247.31}$
26	<u>_N</u> _	_N	26	252–253 Ethanol	$\substack{C_{12}H_{15}N_5S\\261.34}$
27		_N	20	201–202 DMF	$\substack{\text{C}_{13}\text{H}_{17}\text{N}_5\text{S}\\275.37}$
28		− N_0	29	208–209 DMF-water	$\substack{\text{C}_{11}\text{H}_{13}\text{N}_5\text{OS}\\263.31}$
29		-NN	14	230–231 Pyridine-ethanol	${^{ m C_{17}H_{18}N_6S}}{^{338.42}}$
30		N_N-CH ₂	25	205–206 DMF	${ m C_{18}H_{20}N_6S} \ 352.45$
31		-N	26	214–215 DMF-water	$^{\mathrm{C}_{16}\mathrm{H}_{17}\mathrm{N}_{7}\mathrm{S}}_{339.41}$
32	___	-NN	19	215–216 Ethyl acetate	$^{\mathrm{C_{17}H_{18}N_6S}}_{338.42}$
33	N	$-N$ N $\left\langle \right\rangle$	18	235–236 DMF-water	${^{ m C_{17}H_{18}N_6S}}{^{338.42}}$
34	0 - N	N_N	28	285–286 DMF	$^{\mathrm{C_{17}H_{18}N_{6}OS}}_{\mathrm{354.42}}$

$$H_2NC-N$$
TABLE II Physical Constants of S

Compound no.	-N)	Yield [%]	M.p.[°C] solvent for crystallization	Formula MW
11	_n	63	168–169 Ethanol	$\begin{array}{c} {\rm C_5H_{11}N_3S} \\ {\rm 145.22} \end{array}$
12	$-$ N \bigcirc	24	86–87 Ethanol-water	$\substack{ \text{C}_6\text{H}_{13}\text{N}_3\text{S} \\ 159.24 }$
13	-N	28	115–116 Ethanol-water	${}^{\mathrm{C_7H_{15}N_3S}}_{173.27}$
14	-N_O	49	170–171 Ethanol	${^{ ext{C}_5 ext{H}_{11} ext{N}_3 ext{OS}}_{161.22}}$
15	-N	55	178–179 Ethanol	${^{\mathrm{C}_{11}\mathrm{H}_{16}\mathrm{N}_{4}\mathrm{S}}}{^{236.33}}$
16	N	55	167–168 Ethanol	$\substack{\text{C}_{12}\text{H}_{18}\text{N}_4\text{S}\\250.35}$
17	-N	57	179–180 Ethanol	$\substack{ \text{C}_{10}\text{H}_{15}\text{N}_5\text{S} \\ 237.32 }$

solution. The precipitate was filtered, washed with cold water, and recrystallized. For compound **6**, a mass spectrum was taken. MS: $(m/z) = 226 (30), 242 (100 \text{ MH}^+), 243 (10), 466 (25), 482 (66), 483 (13), and 484 (12).$

4-Substituted Thiosemicarbazides (11-17)

Methyl dithiocarbazinate (2.44 g, 20 mmol), made according to Kleyman and colleagues,⁹ was dissolved in 20 mL of water. The solution was treated with appropriate amine (60 mmol). The mixture was heated under reflux for about 6 h until the evolution of methyl mercaptan almost completely ceased. Methyl mercaptan was detected by the yellow color it imparted to moisten the Pb(OAc)₂ paper, which was placed at the mouth of the reflux condenser. In the case of 1-phenylpiperazine and its derivatives, the reactions were carried out in ethanol. Then the solution was cooled and neutralized with AcOH. Further cooling yielded the desired thiosemicarbazides, which were filtered and recrystallized.

TABLE III IR and ¹H NMR Spectral Data of Newly Synthesized Compounds

Compound no.	$ m IR~[cm^{-1}]$	$^1\mathrm{H}~\mathrm{NMR}~\mathrm{DMSO}$ -d $_6~\delta[\mathrm{ppm}]$
1	3257, 3052, 2925, 2745, 1626, 1529, 1451, 1399, 1063, 830, 663	500 MHz: 2.69 (s; 3H, SCH ₃), 8.17 (d; 1H, pyrazine, J 2.2 Hz), 8.28 (s; 1H, pyrazine), 8.44 (s; 1H, pyrazine), 12.14 (s: 1H, NH)
24	3262, 3186, 2919, 2769, 1630, 1552, 1486, 1441, 1425, 772, 664	200 MHz: 2.71 (s; 3H, SCH ₃), 7.00–7.10 (m; 2H 2-pyridyl), 7.73–738 (m; 1H, 2-pyridyl), 8.26–8.31 (m; 1H, 2-pyridyl), 1.79 (s; 1H MH)
က	3207, 3165, 2925, 2606, 1580, 1550, 1509, 1463, 1403, 1383, 803, 675	200 MHz: 2.73 (s; 3H, SCH ₃), 7.96–8.04 (m; 1H, 3-pyridyl), 8.53–860 (m; 2H, 3-pyridyl), 9.28 (d; 1H, 3-pyridyl, J, 2.3 Hz) 12.32 (s; 1H NH)
4	3201, 3077, 2893, 2808, 1640, 1586, 1510, 1339, 808, 743	200 MHz; 2.76 (s; 3, SCH3), 8.08 (d; 2H, 4-pyridyl, J7 Hz), 8 65 (d; 2H 4-pyridyl, J7 Hz) 11 01 (s; 1H NH)
ro	3246, 3106, 3031, 2948, 2549, 1636, 1620, 1567, 1518, 1396, 1344, 1194, 1178, 856	200 MHz: 2.75 (s; 3H, SCH ₈), 8.03 (d; 2H, 4-pyridine-N-oxide, J 7.7 Hz), 8.74 (s; 2H, 4-yridine-N-oxide, J 7.7 Hz), 19.09 (hz), 110 MH)
9	3254, 3153, 2909, 2755, 1624, 1525, 1439, 1405, 1054	200 MHz: 3.13 (s; 3H, SOCH ₃), 8.30 (m; 1H pyrazine), 8.43 (m; 1H, pyrazine), 8.56 (d; 1H, pyrazine, <i>J</i> 1.5Hz), 12.63 (e. 1H NH)
7	3258, 3184, 1552, 1068, 1051, 1627, 1485, 1445, 1432, 785, 667	200 MHz: 3.11 (s; 3H, SOCH ₃), 7.06–7.19 (m; 2H, 2-pyridyl), 7.80–7.89 (m; 1H, 2-pyridyl), 8.39–8.41 (m; 1H 2-nyridyl), 19.91 (c: 1H NH)
œ	3027, 2680, 1633, 1591, 1498, 1471, 1430, 1056	200 MHz: 3.12 (s; 3H, SOCH ₃), 7.41–7.50 (m; 1H, 3-pyridyl), 8.18–8.34 (m; 2H, 3-pyridyl), 8.18–8.44 (m; 2H, 3-pyridyl), 8.79 (t; 1H, 3-nyridyl), 8.79 (t; 1H, NH)
6	2921, 1635, 1607, 1552, 1491, 1425, 1074, 764	200 MHz; 3.55 (8.1727), 7.60 (m; 2H, 4-pyridyl), 8,46 (m; 2H, 4-pyridyl
10	3241, 3109, 2995, 2906, 1630, 1494, 1447, 1332, 1207, 1179, 1156, 1062, 846	(ui, zn, 4-pyrtay), 11,90 (urs, 1n, 1nn) 200 MHz: 3.37 (s; 3H, SOCH ₃), 7.69 (s, 2H, 4-pyridine-N-oxide), 8.20 (s; 2H, 4-pyridine-N-oxide), 11.44 (brs, 1H, NH)

(Continued on next page)

_	
	ea
	ı
•	7
_	Ó
S	ر
	Ś
7	
	3
	9
į	=
į	
ζ	Š
-	=
i	ŏ
•	2
	D D
4	ğ
1	=
ا	چ
(2
į	?
	3
Ļ	פֿ
•	_
	OIL
٢	7
7	ä
1	Ë
į	ပ္
	ă
ζ	מ
۶	Ę
Ž	Ş
Z	Z
	4
	_
1	and
i	ಸ
	112
	=
r	7
۲	1
ŕ	ABL
•	1

no.	${ m IR} [{ m cm}^{-1}]$	$^1\mathrm{H}\mathrm{NMR}\mathrm{DMSO}$ - $\mathrm{d}_{\mathrm{f}}\delta[\mathrm{ppm}]$
	3900 3136 9946 9879 1556 1496 1368 1987	500 MHz: 1 84 (c. 4H CH2) 3 43 (c. 4H NCH2) 4 55 (c. 9H
:	1253, 1029	NH,), 8.57 (8; 1H, NH)
12	3207, 3141, 2964, 1501, 1458, 1443, 1282, 1005,	200 MHz: 1.45-1.59 (m; 6H, CH ₂), 3.69 (t; 4H, NCH ₂), 4.65
9	634	(s; 2H, NH ₂), 8.91 (brs; 1H, NH) $_{900 \text{ MHz.}}$, 144 ($_{200 \text{ MHz.}}$) 165 ($_{200 \text{ MHz.}}$)
9	3224, 3030, 2320, 2630, 1922, 1359, 1274, 1209	Z00 MHZ: 1.44 (m; 4H, NCH ₂ CH ₂ C, H ₂), 1.05 (m; 4H, NCH ₂ CH ₂), 3.68 (t; 4H, NCH ₂ , J 8.7 Hz), 4.69 (s; 2H, NH ₂), 8.69 (s: 1H, NH)
14	3263, 3216, 3035, 2990, 2968, 2925, 2863, 1546,	200 MHz: 3.53-3.70 (m; double triplet, 8H, NCH2, OCH2),
<u>l</u>	1422, 1277, 1228, 1204, 1040, 1028, 1012, 1123	$4.70 \text{ (brs; 2H, NH_2)}$, $9.13 \text{ (brs; 1H, NH)}$
61	5204, 5216, 5057, 2521, 2655, 1600, 1550, 1502, 15424, 1392, 1367, 1341, 1225, 1165, 751, 685	300 MILZ: 3.13 (t, 4tt, INCH2, 3 4:3 ftz), 3.63 (t, 4tt, INCH2, 34:9 Hz), 4.85 (brs; 2H, NH ₂), 6.78 (t; 1H, ArH, J 7 Hz),
		6.92–6.97 (m; 2H, ArH), 7.19–7.25 (m; 2H, ArH), 9.18 (brs: 1H, NH)
16	3239, 3024, 2952, 2815, 1637, 1532, 1413, 1372,	500 MHz: 2.32 (t; 4H, NCH ₂ , J4.6 Hz), 3.46 (s; 2H,
	1337, 1295, 1235, 1139, 736, 695	NCH ₂ Ar), 3.69 (t; 4H, NCH ₂ , J 4.4 Hz), 4.80 (brs; 2H,
		NH ₂), 7.22–7.33 (m; 5H, ArH), 8.55 (brs; 1H, NH)
17	3294, 3204, 3021, 2850, 1598, 1483, 1439, 1420,	200 MHz : $3.50-3.55 \text{ (m; 4H, NCH}_2)$, $3.82-3.87 \text{ (m; 4H, }$
	1392, 1365, 1232, 767, 725	NCH ₂), 4.75 (s; 2H, NH ₂), 6.62–6.68 (m; 1H, 2-pyridyl),
		6,81 (d; 1H, 2-pyridyl, J 8.7 Hz), 7.50–7.59 (m; 1H,
		2-pyridyl), 8.12 (m; 1H, 2-pyridyl), 9.15 (s; 1H, NH)
18	3056, 2971, 2850, 2707, 1630, 1548, 1514, 1450,	500 MHz: 1.96 (s; $4H$, CH_2), 3.38 (s; $4H$, NCH_2), 8.05 (s; $1H$,
	1401, 1364, 1143, 828	pyrazine), 8.21 (s; 1H, pyrazine), 8.36 (s; 1H, pyrazine), 11.44 (s; 1H, NH)
19	3266, 2934, 2852, 1630, 1538, 1507, 1445, 1399,	200 MHz: 1.61 (s; 6H, CH ₂), 3.40 (s; 4H, NCH ₂), 8.08 (d;
	1353, 1255, 1131, 1006, 827	1H, pyrazine, J 2.8 Hz), 8.21–8.23 (m; 1H, pyrazine), 8.39 (d: 1H, pyrazine, J 1.4 Hz), 11.53 (s: 1H, NH)
20	3048, 2935, 2858, 1627, 1544, 1513, 1574, 1445,	200 MHz: 1.51 (m;4H, NCH ₂ CH ₂ CH ₂ CH ₂), 1,73 (m; 4H, NCH ₂ CH ₂), 1,73 (m; 4H, NCH ₂ CH ₂ CH ₂), 1,73 (m; 4H, NCH ₂ CH ₂
	1400, 1340, 1141, 1103, 023	NCH2CH2), 5.51 (t, 4H, NCH2, 9 5.6 Hz), 6.05 (t), 1H, pyrazine, J 2.8 Hz), 8.2 (m; 1H, pyrazine), 8.35 (d; 1H, 1H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2
		pyrazine, J 1.5 Hz), 11.42 (s; 1H, NH)

21	3266, 3150, 2923, 2862, 1632 1512, 1450, 1401, 1269, 1235, 1114	200 MHz: 3.36 (t; 4H, NCH ₂ , J4.8 Hz), 3.72 (t; 4H, OCH ₂ , J4.8 Hz), 8.08 (d; 1H, pyrazine, J 2.8 Hz), 8.20-8.22 (m; 1H, pyrazine), 8.38 (d; 1H, pyrazine, J 1.49 Hz), 11.48 (s; 1H, NH)
22	3058, 2920, 2842, 1631, 1497, 1444, 1404, 1233	500 MHz: 3.25 (s; 4H, NCH ₂), 3.51 (s; 4H, NCH ₂), 6.80 (s; 1H, ArH), 6.97 (s; 2H, ArH), 7.22 (s; 2H, ArH), 8.06 (s; 1H, pyrazine), 8.20 (s; 1H, pyrazine), 8.37 (s; 1H, pyrazine), 11.58 (s; 1H, NH)
83	3254, 3029, 2937, 2809, 1622, 1510, 1540, 1448, 1400, 1139	200 MHz: 2.53 (t; 4H, NCH ₂ , J4.8 Hz), 3.41 (t; 4H, NCH ₂ , J 4.8 Hz), 3.55 (s; 2H, NCH ₂ Ar), 7.25–7.41 (m; 5H, ArH), 8.09 (d; 1H, pyrazine, J 2.8 Hz), 8.22–8.24 (dd; 1H, pyrazine, J 2.79 Hz, J ₂ 1.47 Hz), 8.39 (d; 1H, pyrazine, J 1.46 Hz), 10.52 (brs: 1H, NH)
24	3053, 2850, 1633, 1596, 1541, 1514, 1484, 1437, 1404, 1238, 1144	200 MHz: 3.49 (m; 4H, NCH ₂), 3.64 (m; 4H, NCH ₂), 6.65–6.71 (m; 1H, pyridyl), 6.90 (d; 1H, pyridyl, J 8.6 Hz), 7.56 (m; 1H, pyridyl), 8.08–8.38 (m; 3H, 2H pyrazine and 1H 2-pyridyl), 8.39 (d; 1H, pyrazine, J 1.32), 10.35 (brs; 1H, NH)
25	3224, 2956, 2851, 1627, 1595, 1564, 1527, 1479, 1450, 1415, 1338, 1225, 772	200 MHz: 1.87–2.01 (m; 4H, CH ₂), 3.39 (t; 4H, NCH ₂ , J 6.7 Hz), 6.84–7.25 (m; 2H, 2-pyridyl), 7.63–7.88 (m; 1H, 2-pyridyl), 8.21–8.28 (m: 1H. 2-pyridyl), 10.96 (s: 1H, NH)
26	3043, 2935, 2850, 1628, 1595, 1557, 1520, 1483, 1446, 1419, 1349, 1256, 770	500 MHz: 1.59 (s; 6H, CH ₂), 3.36 (s; 4H, NCH ₂), 6.86 (t; 1H, 2-pyridyl, J 5.8 Hz), 6.96 (d; 1H, 2-pyridyl, J 8.3 Hz), 7.66 (t; 1H, 2-pyridyl, J 8.6 Hz), 8.19 (d; 1H, 2-pyridyl, J 8.6 Hz), 10.99 (s; 1H, NH)
27	3262, 3042, 2926, 2853, 1625, 1597, 1560, 1519, 1482, 1455, 1415, 1340, 770	200 MHz: 1.53 (d; 4H, NCH ₂ CH ₂ CH ₂ , J 3.1 Hz), 1.75 (d; 4H, NCH ₂ CH ₂ , J 1.75 Hz), 3.54 (t; 4H, NCH ₂ , J 5.5 Hz), 6.85–7.00 (m; 2H, 2-pyridyl), 7.63–7.72 (m; 1H, 2-pyridyl), 8.19–8.22 (m: 1H, 2-pyridyl), 11.13 (brs. 1H, NH)
58	3266, 3188, 2950, 2852, 1633, 1560, 1514, 1484, 1446, 1419, 1240, 1115	200 MHz: 3.33 (t; 4H, NCH ₂ , J 4.27 Hz), 3.72 (t; 4H, OCH ₂ , J 4.27 Hz), 6.90 (m; 2H, 2-pyridyl), 7.68 (m; 1H, 2-pyridyl), 8.20 (d; 1H, 2-pyridyl, J 4 Hz), 11.10 (s; 1H, NH) (Continued on next page)

J 5.05 Hz, J 1.98 Hz), 6.92 (m; 3H, 2-pyridyl), 7.53-7.72 (t; 1H, ArH, J7.25 Hz), 7.02 (d; 2H, ArH, J7.96 Hz), 7.25 1H, ArH, J7 Hz), 7.02 (d; 2H, ArH, J7.9 Hz), 7.27 (t; 2H, 8.51 (d; 2H, 4-pyridine-N-oxide, J 6.1 Hz), 12.78 (brs; 1H, 200 MHz: 3.30 (t; 4H, NCH₂, J 4.9 Hz), 3.53 (t; 4H, N CH₂, 1H, ArH, J 7.2 Hz), 7.02 (d; 2H, ArH, J 8 Hz), 7.25 (t; 2H, (m; 2H, 2-pyridyl), 8.13-8.23 (m; 2H, 2-pyridyl), 11.11 (s; 200 MHz: 2.51 (t; 4H, NCH₂, J4.7 Hz), 3.39 (t; 4H, NCH₂, J 4.9 Hz), 6.86–6.96 (m; 3H, ArH), 7.00–7.36 (m; 4H, 2H 200 MHz: 3.41-3.68 (m; 8H, NCH2), 6.67 (q; 1H, 2-pyridyl, 200 MHz: 3.29 (m; double triplet, 8H, NCH2, J5 Hz), 6.85 (t; 2H, ArH, J 8.4 Hz), 7.90 (q; 1H, 3-pirydyl, J₁5.44 Hz, ArH, J7.6 Hz), 7.89 (d; 2H, 4-pyridyl, J 6.5 Hz), 8.51 (d; 200 MHz: 3.28 (s; 4H, NCH₂), 3.56 (s; 4H, NCH₂), 6.83 (t; 200 MHz: 3.31 (s; 4H, NCH₂), 3.58 (s; 4H, NCH₂), 6.85 (t; 2-pyridyl), 8.58-8.62 (m; 1H, 2-pyridyl), 10,95 (brs; 1H, ArH, J 7.5 Hz), 7.82 (d; 4-pyridine N-oxide, J 6.1 Hz), ArH and 2H 2-pyridyl), 7.64–7.73 (m; 1H, 2-pyridyl), J4.9 Hz), 6.85–7.04 (m; 3H, ArH), 7.23–7.44 (m; 2H, 8.20-8.22 (m; 1H, 2-pyridyl), 11.85 (brs; 1H, NH) J 3.12 Hz), 8.45 (m; 2H, 3-pyridyl), 9.19 (d; 1H, ArH), 7.66–7.81 (m; 2H, 2-pyridyl), 8.23 (m; 1H 2H, 4-pyridyl, J 6.6 Hz), 12,50 (brs; 1H, NH) ¹H NMR DMSO-d₆ *δ*[ppm] 3-pyridyl, J 2.2 Hz), 11.86 (brs; 1H, NH) TABLE III IR and ¹H NMR Spectral Data of Newly Synthesized Compounds (Continued) 3255, 3044, 2830, 1626, 1597, 1557, 1480, 1445, 3161, 3045, 2863, 2654, 1632, 1578, 1557, 1546, 3204, 2891, 2760, 1642, 1588, 1525, 1500, 1447, 3410, 3220, 2848, 1642, 1601, 1529, 1493, 1444, 3263, 3154, 2944, 2912, 2817, 1629, 1559, 1513, 3260, 3042, 2892, 2846, 1623, 1595, 1510, 1479, 1481, 1448, 1417, 1242, 1147, 1004, 769, 743 $IR [cm^{-1}]$ 1384, 1349, 1233, 1199, 934 1436, 1415, 1239, 773 1491, 1453, 1232, 761 1416, 1234, 939, 757 Compound no. 29 30 33 34 31 32

2-Amino-5-Aminopyrazinyl-1,3,4-Thiadiazoles (18-24)

N-hydroxy-pyrazinecarboximidoyl chloride (0.39 g, 5 mmol) was dissolved in 20 mL of DMF and treated with 10 mol of appropriate thiosemicarbazide **11–17**. The reaction mixture was refluxed for 10 h, cooled and the precipitate was filtered and recrystallized. For compound **22**, a mass spectrum was taken. MS: $(m/z) = 340 (100 \text{ MH}^+)$, 341 (19), and 342 (7).

2-Amino-5-(Aminopyridin-2-yl)-1,3,4-Thiadiazoles (25-31)

N-hydroxy-pyrazincarboxyimidoyl chloride (0.39 g, 5 mmol) was dissolved in 20 mL of DMF and treated with 10 mmol of appropriate thiosemicarbazide 11–17. The reaction mixture was refluxed for 10 h and was concentrated to about 5 mL and cooled. The precipitate was filtered and recrystallized.

2-(Aminopyridin-3-YI)-5-(4-Phenylpiperazin-1-yI)-1,3,4-Thiadiazole (32)

The synthesis was carried out as described for **25–31**. The concentrated mixture was treated with a small amount of ethyl acetate. After cooling, the precipitate was filtered and recrystallized.

2-(Aminopyridin-4-yl)-5-(4-Phenylpiperazin-1-yl)-1,3,4-Thiadiazole (33) and 2-(Amino-1-Oxy-Isonicotin)-5-(4-Phenylpiperazin-1-yl)-1,3,4-Thiadiazole (34)

The synthesis was carried out as described for **25–31** but the solvent was evaporated to dryness and the residue was treated with 15 mL of ethanol. After cooling, the precipitate was filtered and recrystallized.

Antituberculotic Activity

In vitro investigations were performed by a classical test-tube method of successive dilution with Youman's liquid medium containing 10% of a bovine serum.¹¹

REFERENCES

- F. A. Ashour, N. S. Habbib, M. el Taibbi, S. el Dine, and A.S. el Dine, Farmaco, 45, 1341 (1990).
- [2] A. Foroumadi, M. Daneshtalb, M. Mahmoudian, M. Falahati, N. Nateghian, N. Shahsavarani, and A. Shafiee, *Pharm. Pharmacol. Commun.*, 4, 95 (1998).

- [3] A. Foroumadi, M. Mirzaei, and A. Shafiee, Pharmazie, 56, 610 (2001).
- [4] V. R. Rao and V. R. Srinivasan, Indian J. Chem., 8, 509 (1970).
- [5] I. Lalezari and A. Shafiee, J. Heterocyclic Chem., 8, 835 (1971).
- [6] A. Dornow and K. Fischer, Chem. Ber., 99, 72 (1966).
- [7] T. Sasaki and T. Yoshioka, Bull. Chem. Soc. Jpn., 41, 2211 (1968).
- [8] M. Kočevar, S. Polanc, M. Sollner, M. Tišler, and B. Verček, Synth. Commun., 18, 1427 (1988).
- [9] D. L. Kleyman, J. F. Bartosevich, T. S. Griffin, C. J. Mason, and J. P. Scovill, J. Med. Chem., 22, 855 (1979).
- [10] K. C. Agrawal, M. H. Lee, B. A. Booth, E. C. Moore, and A. C. Sartorelli, J. Med. Chem., 17, 934 (1974).
- [11] H. Foks, M. Buraczewska, W. Manowska, and J. Sawlewicz, Dissert. Pharm. Pharmacol., 23, 49 (1971).