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Abstract: The 4-(2¢-aminoethyl)quinolones 6, 8 and 9 were pre-
pared starting from 4-(2¢-bromoethyl)quinolone (4) in two steps and
overall yields of 56–93%. They underwent inter- and intramolecular
[2+2] photocycloaddition reactions with an alkene to provide the
cyclobutanes 1–3 in racemic form (61–89% yield). The photochem-
ical reaction proceeded with very good chemo-, regio- and stereo-
selectivity. It was in one case (8b → 2b) also performed
enantioselectively (93% ee).
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One of the hallmarks of organic photochemistry is the
ease with which strained cyclobutanes can be prepared by
[2+2] photocycloaddition reactions.1 Consecutive trans-
formations allow for the conversion of the cyclobutane
ring into acyclic carbon substituents by ring-opening, or
into other rings by rearrangement reactions.2 In the course
of a study directed towards the rearrangement of 3-azabi-
cyclo[4.2.0]octanes into 2-azabicyclo[3.3.0]octanes, we
required stereoselective access to compounds 1–3
(Figure 1). An apparent synthetic pathway involves the
intra- or intermolecular [2+2] photocycloaddition reac-
tions of 4-(2¢-aminoethyl)quinolones which in turn ap-
peared to be accessible from 4-(2¢-bromoethyl)quinolone
(4).3 In this communication we report on our preliminary
results in this field. We could show that the desired reac-
tion was feasible with excellent chemo-, regio- and stereo-
selectivity. An enantioselective protocol was employed to
provide cyclobutane 2b in high enantiomeric excess (93%
ee).

Figure 1 Structures of the cyclobutane targets 1–3 and of the 
readily available starting material 4

The [2+2] photocycloaddition of the parent 2-quinolone
(carbostyril) has been intensively studied.4 Due to the
high intersystem crossing rate a triplet pathway is fol-
lowed which involves 1,4-biradical intermediates.4f Sim-
ple 4-alkyl-2-quinolones have also been used in
intermolecular photocycloaddition reactions.4c,d,5 More
complex 4-alkyl-2-quinolones, however, have not yet
been employed nor have, to the best of our knowledge, in-
tramolecular [2+2] photocycloaddition reactions of 4-
alkyl-2-quinolones been studied.6 Our own work com-
menced with the synthesis of potential precursors for the
photocycloaddition. The starting material 4 was prepared
from commercially available 4-methyl-2-quinolone by a
sequence of carboxylation,3a,b esterification,3c reduction,3c

and Appel bromination (60% overall). In order to get our
hands at least on one of the three compounds 1–3 all
possible routes were pursued in a parallel direction
(Scheme 1). The parent N-benzyl(Bn)-N-tert-butyloxy-
carbonyl(Boc)-4-(2¢-aminoethyl)quinolone (6), which is
the precursor for an intermolecular [2+2] photocycloaddi-
tion, was obtained by treatment of bromide 4 with neat N-
benzylamine and by subsequent acylation of amine 5 with
Boc2O. In an analogous fashion the N-allyl derivatives 8
were synthesized via the secondary N-allylamines 7. The
acrylamides 9 were obtained from amine 5 by acylation
with acryloyl chloride and methacryloyl chloride, respec-
tively.

Irradiation experiments were conducted in toluene solu-
tion at room temperature using a conventional merry-
go-round apparatus (Duran filter).7 Based on previous
work4–6 the successful intramolecular [2+2] photocy-
cloadditon of substrates 8 was least surprising (Table 1,
entries 3, 4). The most remarkable aspect concerns the
ease with which the two quaternary stereogenic centers
are formed in cyclobutane rac-2b. The regioselectivity is
determined by the preferred formation of six-membered
rings and the stereochemistry is a result of a preferred an-
nulation to the cyclobutane in a cis-fashion. Cycloaddi-
tions of acrylates are less common than reactions of
electron-rich alkenes with photoexcited a,b-unsaturated
carbonyl compounds.1 In this respect, the smooth photo-
cycloaddition of methyl acrylate (entry 1) and even more
importantly of methyl methacrylate (entry 2) to quinolone
6 came as a pleasant surprise. Attempted reactions at 300
nm (Rayonet RPR-3000 Å lamps) were sluggish but the
reactions proceeded smoothly at 350 nm (RPR-3500 Å).
Yields increased at higher concentration (30 mM vs. 5
mM) without any detectable quinolone dimerization. In a
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similar fashion the acrylamides 9 gave cyclobutanes rac-
3 in an intramolecular reaction (entries 5, 6). Quinolone
9a was not soluble in toluene and the reaction was there-
fore conducted in a suspension.

If a triplet pathway is assumed for the [2+2] photo-
cycloaddition,1 the regioselectivity of the intermolecular
reactions (entries 1, 2) can be accounted for by the forma-
tion of the most stable 1,4-biradical. The relative configu-

ration of products rac-1a and rac-1b was unambiguously
proven by 1H NMR NOESY experiments. Moreover,
compounds rac-1a and rac-1b could be readily converted
into the tetracyclic products rac-3a and rac-3b upon N-
Boc deprotection (Scheme 2, TFA = trifluoracetic acid).
This transformation is only possible if the methoxycarbo-
nyl group in cyclobutanes rac-1a and rac-1b is located cis
to the corresponding N-protected 2-aminoethyl substitu-
ent. The transformation rac-1a → rac-3a proceeded sim-
ply after deprotection by heating the crude N-benzylamine
in toluene for 1 hour under reflux (90% yield).

Scheme 2 Strong 1H NOESY contacts recorded for compound rac-
1b and for compound rac-3b, which could be obtained by intramole-
cular lactam formation from rac-1b

The presence of a lactam moiety in 2-quinolones allowed
for the [2+2] photocycloaddition to be conducted in an
enantioselective fashion (Scheme 3).8 Employing the
chiral complexing reagent 109 (2.3 equiv), the reaction of
8b → 2b proceeded with excellent enantiomeric excess
(93% ee). Toluene was used as the solvent at low temper-
ature to facilitate association of the quinolone to lactam 10
by hydrogen bonds.10 The photocycloaddition was
performed using a high pressure mercury lamp (TQ 150,
Duran filter).11

Scheme 3 Enantioselective intramolecular [2+2] photocycloadditi-
on of substrate 8b in the presence of the chiral complexing agent 10

In summary, the intra- and intermolecular [2+2] photocy-
cloaddition of the title compounds gave access to the tri-
or tetracyclic products 1–3 in good to excellent chemical
yields. The reaction proceeded with high regioselectivity
and in all but one case with excellent simple diastereose-
lectivity. Three stereogenic centers were formed in one
step, the absolute configuration of which can be con-
trolled in an enantioselective variant of the reaction. The
potential of complexing reagent 10 to achieve an efficient
face differentation was shown for one example (8b →
2b).

Scheme 1 Preparation of various 4-(2¢-aminoethyl)quinolones 6, 8,
and 9 from 4-(2¢-bromoethyl)quinolone (4)
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Table 1 Inter- (Entries 1, 2) and Intramolecular (Entries 3–6) Pho-
tocycloaddition of the Quinolones 6, 8 and 9 in Toluene as the Solvent 
(Duran Filter)7

Entry Substrate l (nm) Product Yield (%)a drb

1 6c 350 rac-1a 80 >95:5

2 6d 350 rac-1b 89 75:25

3 8a 300 rac-2a 85 >95:5

4 8b 300 rac-2b 84 >95:5

5 9ae 350 rac-3a 65 >95:5

6 9b 350 rac-3b 61 >95:5

a Yield of isolated product.
b The diastereomeric ratio (dr) was determined by integration of 
appropriate 1H NMR signals from the crude product.
c The reaction was conducted in the presence of an excess (20 equiv) 
of methyl acrylate.
d The reaction was conducted in the presence of an excess (20 equiv) 
of methyl methacrylate.
e A suspension of compound 9a was irradiated in toluene.
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Further work directed towards an enantioselective ap-
proach to compounds 1–3 continues, as does research di-
rected towards possible rearrangement and ring-opening
reactions of these compounds.
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CHCl3). HRMS (EI): m/z calcd for C20H26N2O3: 342.1943. 
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