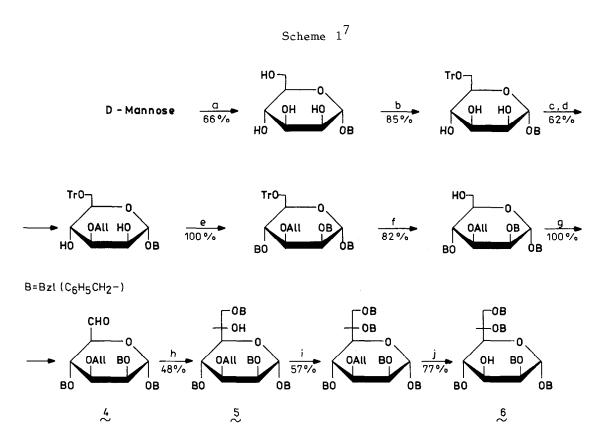
THE SYNTHESIS OF THE HEPTOSE REGION OF THE GRAM-NEGATIVE BACTERIAL CORE OLIGOSACCHARIDES

Krzysztof Dziewiszek, Anna Banaszek, and Aleksander Zamojski^{*}

Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Poland

<u>Summary:</u> Disaccharides linked α (1-3) and α (1-7) and a trisaccharide linked α (1-7) and α (1-3) have been synthesized from suitably blocked L-glycero-D-mannoheptose derivatives using the trichloroacetimidate approach.

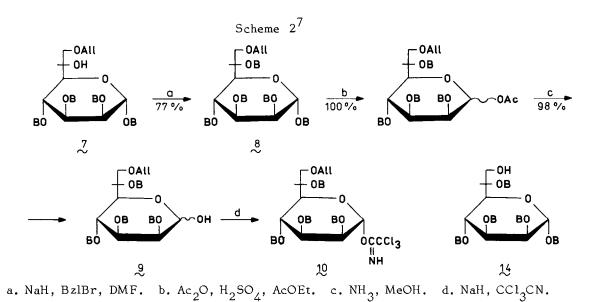

The synthesis of oligosaccharides constituing parts of bacterial lipopolysaccharides attracts the attention of many laboratories. $^{1-4}$

Structural studies have revealed that the heptose region of the core oligosaccharides isolated from many Gram-negative bacteria is composed of two [linked $\alpha(1-3)$, <u>1</u>] or, more often, of three [linked $\alpha(1-7)$ and $\alpha(1-3)$, <u>2</u>] L-glycero-D-mannoheptose (LD-Hepp) units.⁵

We wish to present the first syntheses of $\underline{1}$ and $\underline{2}$, and of $\alpha(1-7)$ linked L-glycero--D-mannoheptobiose ($\underline{3}$).

The suitably blocked L-glycero-D-mannoheptoses were obtained by one-carbon atom homologation at C-6 of D-mannose. $^{\rm 6}$

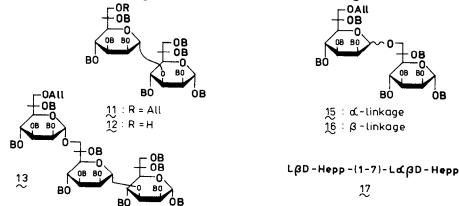
The synthesis of benzyl 2,4,6,7-tetra-0-benzyl-L-glycero- α -D-mannoheptopyranoside (<u>6</u>) representing the future reducing part of <u>1</u> is shown in Scheme 1.



a. BzlOH, HCl (CH₃COCl). b. TrCl, Py. c. Bu_2SnO , MeOH. d. AllBr, DMF. e. NaH, BzlBr, DMF. f. HBF₄, CH₃CN-Et₂O 3:1. g. (COCl)₂, DMSO, Et₃N, CH₂Cl₂. h. PhCH₂OCH₂MgCl, THF, -30^o-r.t. i. NaH, BzlBr, DMF. j. Pd/C, TsOH, MeOH-H₂O.

The reaction of <u>4</u> with benzyloxymethyl magnesium chloride led to two C-6 stereoisomeric heptosides in 28:1 proportion. The prevailing stereoisomer <u>5</u> - readily isolated by column chromatography - had the desired L configuration at C-6. ⁸ It is worth of mentioning that the formation of <u>5</u> could be predicted on the basis of Cram's cyclic model of asymmetric 1,2-induction.

The synthesis of the non-reducing partner $\underline{9}$ for coupling with $\underline{6}$ is shown in Scheme 2.


Heptose <u>9</u> was converted according to Schmidt⁹ into trichloroacetimidate <u>10</u> which was condensed with <u>6</u> in the presence of anh. p-toluenesulfonic acid to yield the α -linked heptobiose <u>11</u> as the single product in 50% yield. Deallylation of <u>11</u> (Pd/C, TsOH, MeOH--H₂O, 88%) gave <u>12</u>. Exhaustive debenzylation (Pd/C, H₂, EtOH, 99%) of <u>12</u> furnished <u>1</u> as a mixture of α and β anomers in the reducing part.¹⁰

The trisaccharide was obtained by condensation of <u>10</u> with <u>12</u> in the presence of anh. p-toluenesulfonic acid. Single α_{e} -linked product <u>13</u> was obtained in 52% yield. Deallylation of <u>13</u> followed by debenzylation (as for <u>11</u>) gave the free trisaccharide <u>2</u> in 44% yield.¹¹

For the synthesis of <u>3</u> heptoside <u>8</u> was deallylated to furnish <u>14</u>; its condensation with <u>10</u> gave a mixture of α and β linked disaccharides (<u>15</u> and <u>16</u>) in 3.5:1 proportion in 91% overall yield. These products were separated by column chromatography. Full deprotection of pure <u>15</u> and <u>16</u> gave free disaccharide <u>3</u> and its β -linked stereoisomer <u>17</u>.¹²

These syntheses demonstrate the utility of the new homologation of D-mannose to L-glycero-D-mannoheptose for the preparation of properly blocked units for further oligosaccharide synthesis. Also, the utility of the recently elaborated trichloroacetimidate method¹³ for the construction of oligosaccharides is worth of stressing.

<u>Acknowledgment.</u> This work was financed from the Grant No.MR-I.12.1.7.4. Authors are grateful to Drs. G. Lukacs and Y. A. Knirel for the help with ¹³C-NMR spectra.

REFERENCES

- Repeating units: S. Josephson and D. R. Bundle, Can. J. Chem., <u>57</u>, 3073 (1979);
 H. Paulsen and W. Kutschker, Carbohydr. Res., <u>120</u>, 25 (1983); N. K. Kochetkov,
 Izv. AN SSSR, Ser. Khim., 1543 (1982) and 243 (1984) and references cited therein.
- Core oligosaccharides: B. Doboszewski and A. Zamojski, Carbohydr. Res., <u>132</u>, 29 (1984).
- K DO-Containing oligosaccharides: H. Paulsen, Y. Hayauchi, and F. M. Unger, Carbohydr. Res., <u>111</u>, C5 (1983) and Liebigs Ann. Chem., 1288 (1984).
- Lipid A: S. Kusumoto, H. Yoshimura, M. Imoto, T. Shimamoto, and T. Shiba, Tetrahedron Lett., <u>26</u>, 909 (1985); C. A. A. van Boeckel, J. P. G. Hermans, P. Westerduin, J. J. Oltvoort, G. A. van der Marel, and J. H. van Boom, Rec. Trav. Chim. Pays--Bas, <u>102</u>, 438 (1983).
- L. Kenne and B. Lindberg in "The Polysaccharides" (G. O. Aspinall Editor), Academic Press, New York, 1983, Vol. 2, p. 287.
- 6. K. Dziewiszek and A. Zamojski, Carbohydr. Res., 150, 163 (1986).
- 7. All compounds depicted in the Scheme had correct elemental analyses and spectral (IR and ^IH-NMR) data.
- 8. Full deprotection of 5 gave free heptose in 30% yield. Its reaction with ethanethiol in hydrochloric acid gave diethyldithioacetal, m.p.199-200°, [a]_D+8.4° (c 1.8, pyridine). M. Teuber, R. D. Bevill, and M. J. Osborn, Biochemistry, 7, 3303 (1968) give for diethyldithioacetal of LD-Hepp: m.p. 202-203°, [a]_D+10.2° (c 1.2, pyridine).
- 9. R. R. Schmidt, J. Michel, and M. Roos, Liebigs Ann. Chem., 1343 (1984).
- 10. $\underline{1}: [\alpha]_{D}^{21}$ -9.6° (c 1.2, water). ¹³C-NMR (100 MHz, D₂O): **s** 103.4 (C-1'\alpha), 102.0 (C-1'\beta), 95.3 (C-1\alpha), 95.2 (C-1\beta), 81.3 (C-3\beta), 78.9 (C-3\alpha), 76.5 (C-5\beta), 73.0 (C-5\alpha), 72.5 (C-5'), 71.7 (C-3', C-2\beta), 71.2 (C-2', C-6\beta), 70.8 (C-2\alpha), 70.1 (C-6\alpha), 69.9 (C-6'), 67.3 (C-4'), 67.1 (C-4\alpha), 66.8 (C-4\beta), 64.1 (C-7\alpha, C-7'), 64.0 (C-7\beta).
- 11. $2: [\alpha]_{D}^{16} + 47.5^{\circ} (c 2.8, water)$. ¹³C-NMR (100 MHz, D₂O): **§** 103.6 (C-1' α), 103.3 (C-1' β), 101.5 (C-1'' α), 95.2 (C-1 α), 94.9 (C-1 β), 81.2 (C-3 β), 78.9 (C-3 α), 75.7 (C-5 β), 73.3 (C-5'), 72.5 (C-5'', C-3''), 72.0 (C-5 α), 71.7 (C-3', C-2 β), 71.2 (C-2'', C-2', C-2 α), 70.1 (C-6'', C-6 α), 70.0 (C-6', C-6 β), 68.5 (C-7'), 67.3 (C-4'', C-4'), 67.1 (C-4 α), 67.0 (C-4 β), 64.3 (C-7'', C-7 α and β).
- 12. $\underline{3}: [\alpha]_{D}^{18} + 38.0^{\circ}$ (c 1.1, water). ¹³C-NMR (75 MHz, D₂O): **s** 101.6 (C-1'), 95.4 (C-1\alpha), 95.2 (C-1\beta), 76.0 (C-5\beta), 74.5 (C-3\beta), 72.7 (C-5'), 72.5 (C-5\alpha, C-2\beta), 72.4 (C-3'), 72.1 (C-2\alpha), 71.8 (C-3\alpha), 71.2 (C-2'), 70.2 (C-6'), 69.9 (C-6\alpha), 69.6 (C-6\beta), 68.6 (C-7\alpha), 68.4 (C-7\beta), 67.5 (C-4\alpha, C-4'), 67.1 (C-4\beta), 64.3 (C-7'). $\underline{17}: {}^{13}$ C-NMR (75 MHz, D₂O): **s** 101.5 (C-1'), 95.5 (C-1\alpha), 95.2 (C-1\beta), 76.0 (C-5'), 75.8 (C-5\beta), 74.6 (C-3\beta), 74.5 (C-3'), 72.5 (C-2\beta), 72.2 (C-2\alpha), 72.0 (C-2'), 71.8 (C-5\alpha), 71.6 (C-6\alpha and \beta), 70.3 (C-6'), 68.3 (C-4'), 67.8 (C-7\beta), 67.6 (C-4\alpha), 67.4 (C-7\alpha), 67.3 (C-4\beta), 64.2 (C-7').
- 13. R. R. Schmidt, Angew. Chem., <u>98</u>, 213 (1986).