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Abstract—A concise and practical catalytic asymmetric synthesis of (—)-CP-99,994 and (—)-L-733,061 was achieved. Key features
involve the Pd-catalyzed asymmetric allylic amination and the ring-closing metathesis as key steps.
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Substance P! (SP), an undecapeptide belonging to the
tachykinin family of peptides, has extremely important
biological activities involving binding to the neuro-
kinin-1 (NK1) receptor. It has been established that
the release of SP is closely related to the transmission
of pain and the induction of neurogenic inflammatory
responses.> Therefore, the SP antagonist’ is expected
to act as a remedy for a wide range of diseases, including
arthritis, asthma, and migraines. It has recently been
reported that the piperidine analogues CP-99,994 (1)*
and L-733,060 (2)° have excellent affinity and selectivity
with human NKI1 receptor. Due to their important
potential pharmacological applications, there have been
several reports on the synthesis of 1 and 2 in both race-
mic®” and optically active forms.3°
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As a synthetic methodology of optically active forms,
previous most reported studies have included the meth-
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odologies that uses a chiral template or a diastereoselec-
tive reaction as a key step for the asymmetric induction.
As an other methodology, catalytic enantioselective syn-
thesis is strongly desirable for the synthesis of 1 and 2.
However, only one example for the catalytic asymmetric
synthesis of 1 using the catalytic asymmetric nitro-Man-
nich reaction as a key step has been reported by Shiba-
saki and co-workers.'® Their results, however, cannot
necessarily be considered satisfactory due to the moder-
ate enantioselectivity of the nitro-Mannich reaction and
the low over all yield (6%).

Most recently, we have reported the highly enantio-
selective Pd-catalyzed asymmetric allylic amination of
common allylacetate 3 using our polymer-supported
phosphinooxathiane ligand 5 to afford the amino prod-
uct 4 in excellent enantioselectivity.!! Although the
substrate 3 has been used as most general substrate of
Pd-catalyzed allylic alkylation and amination,'? only a
few studies have utilized 4 as a chiral building block in
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a stereocontrolled synthesis.'> However, 4 includes a
chiral a-phenyl amine unit, and it should be easily con-
verted to chiral 2-phenylpiperidones. Our intent, there-
fore, was turned to synthesize 1 and 2 using 4 as a key
starting material (Scheme 1).

Herein, we report a concise and practical catalytic asym-
metric synthesis of (—)-CP-99,994 (ent-1) and (—)-L-
733,061 (ent-2) using Pd-catalyzed asymmetric allylic
amination and ring-closing metathesis as key steps

(Fig. 1).

Our retrosynthetic route for ent-1 and ent-2 is outlined
in Scheme 2. These compounds were traced to 2-phenyl-
piperidinone (6), which is constructed by the ring-clos-
ing metathesis (RCM) of 7. Furthermore, the starting
building block 7 was obtained by Pd-catalyzed asym-
metric allylic amination using our explored chiral poly-
mer-supported phosphinooxathiane ligand 5.

First, the synthesis of 2-phenylpiperidinol (10) was
examined (Scheme 3). The Pd-catalyzed asymmetric
allylic amination of allylacetate 3 using chiral ligand 5
afforded allylamine 4 in 90% yield and 99% ee. Product
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Scheme 3. Reagents and conditions: (a) 3-butenoic acid, DCC,
DMAP, CH,Cl,, room temperature, 24 h, 99%; (b) Grubbs’ catalyst,
CH,Cl,, reflux, 24 h, 94%; (c) mCPBA, CH,Cl,, room temperature,
24 h, 63%; (d) LAH, THF, room temperature, 24 h, 78%; (e) (Boc),0,
Pd(OH),, H,, AcOEt, 45 °C, 24 h, 98%.
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Figure 2.

4 was converted to diene 7 in quantitative yield by the
reaction with 3-butenoic acid in the presence of DCC.
The RCM of 7 using the second-generation Grubbs
catalyst proceeded smoothly to afford the desired 2-phen-
ylpiperidinone 6 in 94% yield.!* Furthermore, the epoxi-
dation of 6 with m-chloroperbenzoic acid (mCPBA)
gave the corresponding epoxide (8)'> in 63% yield as
a single stereoisomer. Reduction of amide moiety
followed by regioselective ring opening of the epoxide
in 8 with lithium aluminum hydride (LAH) afforded
trans-N-Bn-hydroxyphenyl piperidine 9'° in 78% yield.
The reaction might be through the conformer A that
has a less steric interaction between a benzyl group on
nitrogen and a phenyl group at 2-position rather than
conformer B. Then the hydride anion might attack from
the B-axial site at 3-position to afford the desired trans-
product 9 (Fig. 2).'® Then, product 9 was easily con-
verted to the desired N-Boc-2-phenyl-hydroxyphenyl
piperidine (10) in 98% yield.

Next, the synthesis of ent-1 was examined. We planned
to access compound ent-1 by the oxidation of 10, fol-
lowed by imine formation using 11 and reduction of
imine 12, as shown in Scheme 4. Although this is a
convenient pathway and some research groups carried
out this synthetic route to 1, it has been known that
2-phenyl-piperidinone 11 is prone to racemization.!’
Therefore, we examined the derivation to N-Boc-13
without isolation of either ketone 11 or imine 12. Thus,
the Swern oxidation of 10 and imine formation with
2-methoxybenzylamine at —20°C, followed by the
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Scheme 4. Reagents and conditions: (a) Swern oxidation; (b) 2-
methoxybenzylamine, TiCl,, —20°C, 24 h; (¢) NaCNBH;, MeOH,
—20°C, 12 h, 49% (three steps); (d) HCI, CH,Cl,, room temperature,
24 h, 99%.
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Scheme 5. Reagents and conditions: (a) Swern oxidation; (b)
L-Selectride, THF, —20 °C, 83% (two steps); (c) NaH, 3,5-bistrifluoro-
methylbenzyl bromide, DMF, room temperature, 24 h, 77%; (d) HCI,
CH,Cl,, room temperature, 24 h, 98%.

stereoselective reduction of imine (12) using sodium
cyanoborohydride, gave the desired N-Boc-ent-1 in
49% yield from 10. Using this method, the racemization
of 11 was not observed. Finally, the removal of the Boc
group with HCI afforded ent-1 in 99% yield.'®

Furthermore, this methodology was applied to the syn-
thesis of ent-2. Thus, the Swern oxidation of 10, followed
by the stereoselective reduction of 11, using L-Selectride
at —20 °C gave the desired N-Boc-2,3-cis-hydroxy piper-
idine 14 in 83% yield from 10. Furthermore, the reaction
of 14 with bistrifluoromethyl bromide using NaH as a
base afforded N-Boc-ent-2 in 77% yield, which was then
easily converted to ent-2 in 98% yield (Scheme 5).'°

In conclusion, we demonstrated both the catalytic asym-
metric synthesis of ent-1 and the first catalytic asymmet-
ric synthesis of ent-2 using the Pd-catalyzed asymmetric
allylic amination and the ring closing metathesis as key
steps. All of reactions proceeded sterco- and regioselec-
tively in the synthetic route. The synthesis of ent-1 com-
pleted in 10 steps and the overall yield was 26%, which is
better than the result (6%) of Shibasaki’s group. In addi-
tion, the synthesis of ent-2 also completed the overall
yield of ent-2 was 20%. Further applications of this
methodology using chiral building block 4 will be
reported in due course.
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