

Tetrahedron Letters

Tetrahedron Letters 46 (2005) 221-224

A novel one-pot two-component synthesis of tricyclic pyrano[2,3-b]quinoxalines

Shyamaprosad Goswami* and Avijit Kumar Adak

Department of Chemistry, Bengal Engineering and Science University, Shibpur,[†] Howrah 711 103, India

Received 20 September 2004; revised 9 November 2004; accepted 15 November 2004

Available online 30 November 2004

Abstract—A one-pot two-component synthesis of tricyclic pyrano[2,3-*b*]quinoxalines with a pendant hydroxymethyl fuction at the 2-position relevant to molybtopterin is described by the reaction of *o*-phenylenediamine and phenylhydrazone derivatives of sugars in good yields.

© 2004 Elsevier Ltd. All rights reserved.

The metal-binding tetrahydropyranopterin enedithiolate or molybdopterin (MPT) is the organic ligand of the molybdenum co-factor (Moco), which has a reduced tricyclic pyranopterin nucleus that carries a terminal phosphate group and a Mo atom bound to an enedithiolate system 1. Detailed spectroscopic analysis and structural characterization^{2a} recently demonstrated that the fully reduced pyranopterin system is present in the precursor **Z**, **2** of Moco, which is different from compound **Z**. In 1990, Pfleiderer and co-workers reported elegant work on the synthesis of pyranotetrahydropteridines, **3** from various 5,6-diaminopyrimidines and phenylhydrazones of pentoses. Joule and co-workers have recently dem-

Keywords: Pyrano[2,3-b]quinoxalines; Phenylhydrazones; Molybdopterin.

onstrated the synthesis of the organic proligand 4 related to MPT in its protected and masked form.⁴

Pyrano[2,3-b]quinoxalines have proven to be the most promising model substrates related to the MPT of Moco.^{4,5} Joule and co-workers have described a linear synthesis of pyranoquinoxalines and the cobalt complex 5 as a model complex related to MPT.⁵ Thus, the development of pyrano[2,3-b]quinoxalines has been a field of intense investigation over recent years.⁴⁻⁶ Herein we describe the synthesis of pyranoquinoxalines 6, which involved in situ cyclization of a side-chain hydroxyl group of sugar hydrazones resulting in the pyran ring with the desired side-chain length as found in MPT.

In our synthetic studies⁷ on Moco, we recently reported a microwave-mediated Gabriel–Isay condensation for the fusion a pyrazine ring onto a preformed pyrimidine for the synthesis of 6-substituted pterins, and also onto a benzene ring for 2-substituted quinoxalines by reaction with D-glucose or D-galactose with appropriate diamines.⁸ However, the use of phenylhydrazone derivatives of these aldohexoses for the synthesis of pyranoquinoxalines, and 6-substituted pteridines remains relatively unexplored, although the analogous phenylhydrazones

^{*}Corresponding author. Tel.: +91 33 26684561; fax: +91 33 26682916; e-mail: spgoswamical@yahoo.com

[†]Previously named as Bengal Engineering College (Deemed University).

of sugars (e.g., D-arabinose phenylhydrazone) have found applications in the synthesis of 6-polyhydroxyalkylpteridines or pyranopteridines. Our synthesis represents for the first time, a one-step entry to the tricyclic pyranoquinoxaline system having the desired hydroxymethyl function as found in MPT.

We have synthesized pyrano[2,3-b]quinoxalines using phenylhydrazones 8a-c, which in turn were prepared according to a literature procedure¹⁰ (Scheme 1).

To this end we started with D-arabinose **7a** and D-glucose **7b**, which upon reaction with phenylhydrazine (freshly prepared from sodium acetate and phenylhydrazine hydrochloride) in water at 22 °C gave phenylhydrazones **8a** and **8b** in 40% and 42% yields. D-Galactose **7c** afforded D-galactose phenylhydrazone **8c** in 80% yield.¹¹

The synthesis of pyranoquinoxalines **6a-c** was achieved starting from these phenylhydrazones **8a-c** (Scheme 2).

Thus the condensation reaction between *o*-phenylenediamine and phenylhydrazones **8a–c** in methanol–water (1:1), concd HCl and 2-mercaptoethanol at 50–60 °C led to the formation of pure pyrano[2,3-*b*]quinoxalines **6a–c** in moderate yields. ¹² Formation of pyranoquinoxalines **6b–c** suggests that the C5 hydroxyl group of the

phenylhydrazones is always involved in the cyclization process resulting in a pyran ring and also the formation of one diastereoisomer almost exclusively. Polyhydroxypyranoquinoxalines **6b–c** are soluble in alcohol and DMSO, which make isolation of the products difficult, so the more soluble penta-acetyl derivatives **9a–b** were prepared (acetic anhydride, DMAP, 60–80 °C, 6–8 h) in 68–80% yield for ease of purification. ¹³

The structures of tricyclic pyrano[2,3-b]quinoxalines 6 and 9 were established by spectroscopic studies. ^{11,12} In their ¹H NMR spectra, the three methine protons appeared in the range of 6.22–6.06 ppm (H-10a), 5.86–5.78 ppm (H-2), and 5.54–5.34 ppm (H-4a), which are consistent with this class of compounds. ⁵

The stereochemistry at the two chiral centers (C3 and C4) of 6 and 9 were already known from the configuration of the starting phenylhydrazones of D-arabinose, D-glucose, and D-galactose used. The *cis* stereochemistry of the pyrazine/pyran ring junction was established using ¹H NMR data based on both the coupling constant values and also by observations from the selective NOESY experiments (Fig. 1).

In compound **9b**, the proton at H-4a (δ 5.54 ppm, dd, J = 2.0, 2.0 Hz), showed a strong NOE to the two

Scheme 1.

Figure 1. Key NOESY interactions observed in 9b.

methine proton signals at δ 6.22 ppm (d, J = 3.0 Hz, H-10a) and at δ 5.78 ppm (dd, J = 3.0, 3.0 Hz, H-2), for H-10a and H-2, respectively, and thus established their *cis* relationships. The small coupling constant values (J = 2.0–3.0 Hz) of H-4a with H-10a, and H-2 also suggested that these protons are *cis* with an axial–equatorial arrangement in a chair conformation (see Fig. 1). ^{9d}

The instabilities of pyranoquinoxalines or pyranopteridines are mainly due to the reversible proton-catalyzed cleavage of the N–C–O system followed by irreversible aerial oxidation, which ultimately produces 2- and 6-substituted derivatives. ¹⁴ Therefore, protection is required in order to avoid such oxidation of the tricyclic form. The pyranoquinoxalines 6 are relatively stable compounds and did not undergo such oxidative cleavage to 2-substituted dihydro- or fully oxidized systems during acetylation as suggested from the ¹H NMR studies of 9.

In conclusion, we have developed a novel one-step procedure for the synthesis of tricyclic pyrano[2,3-b]quinoxalines, which have the desired side-chain length as found in MPT of the molybdenum co-factor. Further work on pteridine derivatives is underway.

Acknowledgements

We are thankful to the Council of Scientific and Industrial Research (CSIR), Government of India for financial support and the Bose Institute, Kolkata for access to a 500 MHz NMR instrument. A.K.A. acknowledges CSIR, Government of India for a research fellowship.

References and notes

- 1. (a) Chan, M. K.; Mukund, S.; Kletzin, A.; Adams, M. M. W.; Rees, D. C. Science 1995, 267, 1463–1469; (b) Romao, M. J.; Archer, M.; Moura, I.; Moura, J. J. G.; LeGall, J.; Engh, E.; Schneider, M.; Hof, P.; Huber, R. Science 1995, 270, 1170-1176; (c) Schindelin, H.; Kisker, C.; Hilton, J.; Rajagopalan, K. V.; Rees, D. C. Science 1996, 272, 1615-1621; (d) Hille, R. Chem. Rev. 1996, 96, 2757–2816; (e) Boyington, J. C.; Gladyshev, V. N.; Khangulov, S. V.; Stadtman, T. C.; Sun, P. C. Science 1997, 275, 1305-1308; (f) Baugh, P. E.; Collison, D.; Garner, C. D.; Joule, J. A. In Comprehensive Biological Catalysis, 1998; Vol. III, pp 377-400; (g) Hille, R.; Retey, J.; Bartlewski-Hof, U.; Reichenbecher, W.; Schink, B. FEMS Microbiol. Rev. 1999, 22, 489-501; (h) Li, H.-K.; Temple, C.; Rajagopalan, K. V.; Schindelin, H. J. Am. Chem. Soc. 2000, 122, 7673-7680.
- 2. For a recent discussion, see: (a) Santamaria-Araujo, J. A.; Fischer, B.; Otte, T.; Nimtz, M.; Mendel, R. R.; Wray, V.;

- Schwarz, G. *J. Biol. Chem.* **2004**, *279*, 15994–15999; (b) Johnson, J. L.; Wuebbens, M. M.; Rajagopalan, K. V. *J. Biol. Chem.* **1989**, *264*, 13440–13447.
- 3. (a) Soyka, von R.; Pfleiderer, W.; Prewo, R. *Helv. Chim. Acta* **1990**, *73*, 808–826; (b) Soyka, R.; Pfleiderer, W. *Pteridines* **1990**, *2*, 63–74.
- For recent examples, see: (a) Bradshaw, B.; Collison, D.; Garner, C. D.; Joule, J. A. Chem. Commun. 2001, 123–124; (b) Bradshaw, B.; Dinsmore, A.; Ajana, W.; Collison, D.; Joule, J. A. J. Chem. Soc., Perkin Trans. 1 2001, 3239–3244; (c) Bradshaw, B.; Dinsmore, A.; Collison, D.; Garner, C. D.; Joule, J. A. Org. Biomol. Chem. 2003, 1, 129–133.
- (a) Bradshaw, B.; Dinsmore, A.; Garner, C. D.; Joule, J. A. *Chem. Commun.* 1998, 417–418; (b) Bradshaw, B.; Dinsmore, A.; Collison, D.; Garner, C. D.; Joule, J. A. *J. Chem. Soc., Perkin Trans.* 1 2001, 3232–3238.
- Mamedov, V. A.; Kalinin, A. A.; Gubaidullin, A. T.; Litvinov, I. A.; Levin, Ya. A. Chem. Heterocyl. Compd. 2003, 39, 96–100.
- (a) Taylor, E. C.; Goswami, S. P. Tetrahedron Lett. 1991, 32, 7357–7360; (b) Pilato, R. S.; Eriksen, K. E.; Greaney, M. A.; Stiefel, E. I.; Goswami, S.; Kilpatrick, L.; Spiro, T. G.; Taylor, E. C.; Rheingold, A. R. J. Am. Chem. Soc. 1991, 113, 9372–9374; (c) Goswami, S. P. Heterocycles 1993, 35, 1551–1572; (d) Goswami, S. P.; Adak, A. K. Tetrahedron Lett. 2002, 42, 503–505; (e) Goswami, S. P.; Adak, A. K. Chem. Lett. 2003, 32, 678–679.
- Goswami, S. P.; Adak, A. K. Tetrahedron Lett. 2002, 43, 8371–8373.
- (a) Viscontini, M.; Provenzale, R.; Olhgart, S. Helv. Chim. Acta 1970, 53, 1202–1207; (b) Russell, J. R.; Garner, C. D.; Joule, J. A. Synlett 1992, 711–712, and references cited therein; (c) Low, J. N.; Lopez, M. D.; Quijano, M. L.; Sanchez, A.; Nogueras, M. Acta Cryst. 1999, C55, 452–454; (d) Lopez, M. D.; Quijano, M. L.; Sanchez, A.; Nogueras, M.; Low, J. N. J. Heterocyl. Chem. 2001, 38, 727–736; (e) For a recent report in this series, see: Guiney, D.; Gibson, C. L.; Suckling, C. J. Org. Biomol. Chem. 2003. 1, 664–675.
- (a) Wolform, M. L.; Christman, C. C. J. Am. Chem. Soc. 1931, 53, 3413–3419; (b) Mester, L.; Messmer, A. Methods Carbohydr. Chem. 1963, 2, 117–118.
- 11. All compounds gave satisfactory spectroscopic data. Selected physical data for compound **8c**: Pale-yellow solid. Mp 150–153 °C [lit. 10b 154–155 °C]. UV/vis (CHCl₃): λ_{max} (log ε): 274 nm (5.0). FT-IR (KBr): 3480, 2925, 1751, 1435, 1374, 1221, 1046, 746 cm $^{-1}$. H NMR (DMSO- d_6 , 500 MHz): δ (ppm) = 10.13 (s, 1H), 7.63 (d, 1H, J = 6.3 Hz), 7.51 (t, 2H, J = 7.9 Hz), 7.28 (d, 2H, J = 7.6 Hz), 7.03 (t, 1H, J = 7.2 Hz), 5.10 (d, 1H, J = 6.2 Hz), 4.79 (t, 2H, J = 5.2 Hz), 4.72 (t, 1H, J = 6.3 Hz), 4.53 (t, 2H, J = 8.9 Hz), 4.10 (q, 1H, J = 6.5 Hz), 3.89 (p, 2H, J = 8.7 Hz), 3.82–3.74 (m, 2H). 13 C NMR (DMSO- d_6 , 125 MHz): δ_C (ppm) = 146.72 (d), 143.28, 129.80, 118.82, 112.45, 73.29 (d), 71.08 (d), 70.70 (d), 70.04 (d), 63.92 (d). MS (ESI): m/z (%) = 270 (M $^+$, 8), 149 (32), 108 (9), 93 (100), 65 (10), 28 (27).
- 12. Typical experimental procedure for the condensation of *o*-phenylenediamine with D-galactose phenylhydrazone. Synthesis of pyrano[2,3-*b*]quinoxaline **6c**. To a stirred solution of *o*-phenylenediamine (0.12 g, 1.11 mmol) in a 50% mixture of methanol-water (20 mL) were added freshly prepared D-galactose phenylhydrazone (0.33 g, 1.21 mmol), two drops of 2-mercaptoethanol and HCl (5 N, 0.5 mL). The reaction mixture was heated for 4 h at 50 °C and then allowed to cool to room temperature and then cooled at 0 °C. The resulting brown precipitate was collected by filtration, washed with cold water, acetone,

- and ether, dried, which consisted of mainly the title compound **6c** (0.14 g, 58%). Mp 240 °C (dec); UV/vis (CH₃OH): λ_{max} (log ε): 280 (3.2), 273 (3.2), 243 nm (3.2). FT-IR (KBr): 3558, 3399, 2926, 1624, 1433, 1269, 1105, 1036 cm⁻¹. ¹H NMR (DMSO- d_6 , 300 MHz): δ (ppm) = 7.58–7.56 (m, 2H), 7.16–7.08 (m, 2H), 6.90 (d, 1H, J = 7.8 Hz), 6.50 (dd, 1H, J = 3.4, 2.1 Hz), 6.38 (dd, 1H, J = 3.5, 2.2 Hz), 5.52 (d, 1H, J = 6.5 Hz), 5.14 (d, 2H, J = 6.0 Hz), 3.91 (t, 2H, J = 7.7 Hz), 3.75 (br s, 2H), 3.62 (d, 2H, J = 9.3 Hz). ¹³C NMR (DMSO- d_6 , 125 MHz): δ C (ppm) = 158.53, 148.51, 123.69, 122.02, 73.59, 70.78, 70.03, 68.35, 63.98. MS (ESI): m/z (%) = 269.2 (M⁺+NH₃, 100), 251.2 (20), 215.4 (10), 174.9 (15), 161.2 (25), 147.2 (30).
- 13. The pyrano[2,3-b]quinoxaline **6c** (0.08 g, 0.23 mmol), acetic anhydride (1.0 mL), and DMAP (10 mg) were heated at 60–80 °C for 4–6 h and then evaporated under reduced pressure. The residue was dissolved in methylene chloride, washed with 5% NaHCO₃, water, and dried (Na₂SO₄). The organic layer after evaporation and purification by preparative thin layer chromatography using 1% methanol
- in methylene chloride afforded the penta-acetyl derivative **9b** as a light-yellow solid. Mp 144–145 °C; UV/vis (CHCl₃): $\lambda_{\rm max}$ (log ε): 271 (8.3), 245 nm (8.3). FT-IR (KBr): 3479, 2925, 1752, 1435, 1374, 1220, 1047 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) = 7.27–7.23 (m, 4H), 6.22 (d, 1H, J = 3.0 Hz), 5.78 (dd, 1H, J = 3.0, 3.0 Hz), 5.54 (dd, 1H, J = 2.0, 2.0 Hz), 5.32 (dt, 1H, J = 2.0, 4.0, 2.2 Hz), 4.30 (dd, 1.5H, J = 5.1, 5.1 Hz), 3.90 (dd, 1.5H, J = 7.3, 7.3 Hz), 2.19, 2.09, 2.05, 2.02, and 1.97 (5 × s, 15H, 2 × NHCOCH₃ and 3 × OCOCH₃). ¹³C NMR (CDCl₃, 125 MHz): $\delta_{\rm C}$ (ppm) = 170.86, 170.71, 170.48, 170.34, 169.46, 148.51, 131.32, 129.25, 69.37, 68.47, 68.02, 67.92, 62.39, 21.11, 21.07, 21.03, 20.91, 20.88. MS (FAB): m/z (%) = 479 (M⁺+NH₃, 100), 419 (M–Ac, 10), 377 (M 2 × Ac, 10), 317 (15), 257 (5), 203 (10), 161 (40), 147 (35). Anal. Calcd for C₂₂H₂₆N₂O₉: C, 57.13; H, 5.66; N, 6.05. Found: C, 57.01; H, 5.78; N, 5.99.
- 14. For a discussion on the stability of reduced pyranoquinoxalines or pyranopteridines, see: (a) Ref. 4a; (b) Greatbanks, S. P.; Hillier, I. H.; Garner, C. D.; Joule, J. A. *J. Chem. Soc., Perkin Trans.* 2 **1997**, 1529–1534.