
Tetrahedron Letters 46 (2005) 221–224

Tetrahedron
Letters
A novel one-pot two-component synthesis of tricyclic
pyrano[2,3-b]quinoxalines

Shyamaprosad Goswami* and Avijit Kumar Adak

Department of Chemistry, Bengal Engineering and Science University, Shibpur,� Howrah 711 103, India

Received 20 September 2004; revised 9 November 2004; accepted 15 November 2004

Available online 30 November 2004
Abstract—A one-pot two-component synthesis of tricyclic pyrano[2,3-b]quinoxalines with a pendant hydroxymethyl fuction at the
2-position relevant to molybtopterin is described by the reaction of o-phenylenediamine and phenylhydrazone derivatives of sugars
in good yields.
� 2004 Elsevier Ltd. All rights reserved.
The metal-binding tetrahydropyranopterin enedithiolate
or molybdopterin (MPT) is the organic ligand of the
molybdenum co-factor (Moco), which has a reduced tri-
cyclic pyranopterin nucleus that carries a terminal phos-
phate group and a Mo atom bound to an enedithiolate
system 1.1 Detailed spectroscopic analysis and structural
characterization2a recently demonstrated that the fully
reduced pyranopterin system is present in the precursor
Z, 2 of Moco, which is different from compound Z.2b In
1990, Pfleiderer and co-workers reported elegant work
on the synthesis of pyranotetrahydropteridines, 3 from
various 5,6-diaminopyrimidines and phenylhydrazones
of pentoses.3 Joule and co-workers have recently dem-
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onstrated the synthesis of the organic proligand 4
related to MPT in its protected and masked form.4

Pyrano[2,3-b]quinoxalines have proven to be the most
promising model substrates related to the MPT of
Moco.4,5 Joule and co-workers have described a linear
synthesis of pyranoquinoxalines and the cobalt complex
5 as a model complex related to MPT.5 Thus, the devel-
opment of pyrano[2,3-b]quinoxalines has been a field of
intense investigation over recent years.4–6 Herein we
describe the synthesis of pyranoquinoxalines 6, which
involved in situ cyclization of a side-chain hydroxyl
group of sugar hydrazones resulting in the pyran ring
with the desired side-chain length as found in MPT.
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In our synthetic studies7 on Moco, we recently reported
a microwave-mediated Gabriel–Isay condensation for
the fusion a pyrazine ring onto a preformed pyrimidine
for the synthesis of 6-substituted pterins, and also onto a
benzene ring for 2-substituted quinoxalines by reaction
with DD-glucose or DD-galactose with appropriate diam-
ines.8 However, the use of phenylhydrazone derivatives
of these aldohexoses for the synthesis of pyranoquinox-
alines, and 6-substituted pteridines remains relatively
unexplored, although the analogous phenylhydrazones
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of sugars (e.g., DD-arabinose phenylhydrazone) have
found applications in the synthesis of 6-poly-
hydroxyalkylpteridines or pyranopteridines.9 Our syn-
thesis represents for the first time, a one-step entry to
the tricyclic pyranoquinoxaline system having the de-
sired hydroxymethyl function as found in MPT.

We have synthesized pyrano[2,3-b]quinoxalines using
phenylhydrazones 8a–c, which in turn were prepared
according to a literature procedure10 (Scheme 1).

To this end we started with DD-arabinose 7a and DD-glu-
cose 7b, which upon reaction with phenylhydrazine
(freshly prepared from sodium acetate and phenylhydra-
zine hydrochloride) in water at 22 �C gave phenylhydra-
zones 8a and 8b in 40% and 42% yields. DD-Galactose 7c
afforded DD-galactose phenylhydrazone 8c in 80% yield.11

The synthesis of pyranoquinoxalines 6a–c was achieved
starting from these phenylhydrazones 8a–c (Scheme 2).

Thus the condensation reaction between o-phenylenedi-
amine and phenylhydrazones 8a–c in methanol–water
(1:1), concd HCl and 2-mercaptoethanol at 50–60 �C
led to the formation of pure pyrano[2,3-b]quinoxalines
6a–c in moderate yields.12 Formation of pyranoquinox-
alines 6b–c suggests that the C5 hydroxyl group of the
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phenylhydrazones is always involved in the cyclization
process resulting in a pyran ring and also the formation
of one diastereoisomer almost exclusively. Polyhydroxy-
pyranoquinoxalines 6b–c are soluble in alcohol and
DMSO, which make isolation of the products difficult,
so the more soluble penta-acetyl derivatives 9a–b were
prepared (acetic anhydride, DMAP, 60–80 �C, 6–8 h)
in 68–80% yield for ease of purification.13

The structures of tricyclic pyrano[2,3-b]quinoxalines 6
and 9 were established by spectroscopic studies.11,12 In
their 1H NMR spectra, the three methine protons
appeared in the range of 6.22–6.06 ppm (H-10a),
5.86–5.78 ppm (H-2), and 5.54–5.34 ppm (H-4a),
which are consistent with this class of compounds.5

The stereochemistry at the two chiral centers (C3 and
C4) of 6 and 9 were already known from the configura-
tion of the starting phenylhydrazones of DD-arabinose,
DD-glucose, and DD-galactose used. The cis stereochemistry
of the pyrazine/pyran ring junction was established
using 1H NMR data based on both the coupling con-
stant values and also by observations from the selective
NOESY experiments (Fig. 1).

In compound 9b, the proton at H-4a (d 5.54 ppm, dd,
J = 2.0, 2.0 Hz), showed a strong NOE to the two
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Figure 1. Key NOESY interactions observed in 9b.
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methine proton signals at d 6.22 ppm (d, J = 3.0 Hz, H-
10a) and at d 5.78 ppm (dd, J = 3.0, 3.0 Hz, H-2), for H-
10a and H-2, respectively, and thus established their cis
relationships. The small coupling constant values
(J = 2.0–3.0 Hz) of H-4a with H-10a, and H-2 also sug-
gested that these protons are cis with an axial–equatorial
arrangement in a chair conformation (see Fig. 1).9d

The instabilities of pyranoquinoxalines or pyranopter-
idines are mainly due to the reversible proton-catalyzed
cleavage of the N–C–O system followed by irreversible
aerial oxidation, which ultimately produces 2- and
6-substituted derivatives.14 Therefore, protection is re-
quired in order to avoid such oxidation of the tricyclic
form. The pyranoquinoxalines 6 are relatively stable
compounds and did not undergo such oxidative cleav-
age to 2-substituted dihydro- or fully oxidized systems
during acetylation as suggested from the 1H NMR stud-
ies of 9.

In conclusion, we have developed a novel one-step pro-
cedure for the synthesis of tricyclic pyrano[2,3-b]quinox-
alines, which have the desired side-chain length as found
in MPT of the molybdenum co-factor. Further work on
pteridine derivatives is underway.
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