Remarkable Effect of Aluminum Reagents on Rearrangements of Epoxy Acylates via Stable Cation Intermediates and Its Application to the Synthesis of (S)-(+)-Sporochnol A

Yasuyuki Kita,* Akihiro Furukawa, J unko Futamura, K oichiro U eda, Y oshinari Sawama, Hiromi Hamamoto, and Hiromichi Fujioka
Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, J apan
kita@phs.osaka-u.ac.jp

Received April 25, 2001

A remarkable effect of $\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right)_{3} \mathrm{Al}$ for promoting the rearrangement of epoxy acylates via stable cation intermediates was found, and new methods for constructing chiral benzylic, vinylic, and acetylenic quaternary carbon centers were developed. During the study, the importance of the ionic nature of the O-metal bond in the intermediates of such epoxides was addressed. This method was applied to the asymmetric total synthesis of (S)-(+)-sporochnol A.

Introduction

The rearrangement of epoxides is a useful tool to transform the carbon skeleton and has been extensively studied from both synthetic and theoretical points of view. ${ }^{1}$ The ionic nature of $\mathrm{O}-\mathrm{A}^{-}$bonds of intermediates obtained by acid ($A-B$) treatment of epoxides is an important factor to get fruitful results. In this paper, we report such examples in which the ionic nature of the $\mathrm{O}-\mathrm{A}^{-}$bond plays an important role and its application.

After the devel opment of many ways to obtain optically active epoxides exemplified by the Sharpless-Katsuki asymmetric epoxidation technology, it became easy to obtain optically active epoxides, and their rearrangements have provided good ways to obtain optically active carbonyl compounds. ${ }^{2}$ In fact, many reports show that chiral aldehydes and ketones can be obtained by the rearrangement of optically active epoxides in high yields with high enantioselectivity. ${ }^{3}$ We have also developed methods to obtain optically active carbonyl compounds having spiro skeletons or quaternary carbons by rearrangement of the 2,3-epoxy acylates, easily prepared in optically active forms. ${ }^{4,5}$ We then attempted to construct chiral benzylic quaternary carbon centers by the rearrangement of the 3-aryl-2,3-epoxy acylates because many natural products have chiral benzylic quaternary carbon centers. ${ }^{6}$

[^0]Among our previous studies on the rearrangement of 2,3-epoxy acylates (eqs 1 and 2), ${ }^{4,5}$ the following two

features are noteworthy: (i) the tetraal kyl substituted 2,3-epoxy acylates rearrange via the C3-cleavage of the oxirane rings (the C3-carbocation intermediates) as a

[^1]result of the electron-withdrawing nature of the acyloxyalkyl group (eq 1), ${ }^{4}$ and (ii) the reactions of cyclic 2-aryl-2,3-epoxy acylates proceed via the C2-cleavage of the oxirane rings (the C2-carbocation intermediates), which show that the aryl group significantly stabilizes the carbocation and overcomes the destabilization ability of the C2-carbocation by the acyloxyalkyl group (eq 2). ${ }^{5}$ Therefore, 3-aryl-2,3-epoxy acylates with a C3-aryl group are supposed to rearrange smoothly via the C3-carbocation intermediates by the double regioselective effect of the electron-withdrawing nature of the acyloxyalkyl group and stabilization ability of the phenyl group. We then planned the rearrangement of the 3-aryl-2,3-epoxy acylates in order to construct the chiral quaternary benzylic carbon centers eq $3 .{ }^{7}$

During the study, we determined the importance of the ionic nature of the $\mathrm{O}-\mathrm{Al}$ bond, the remarkable effect of aluminum reagents, especially $\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right)_{3} \mathrm{Al}$, in the reactions of 3-aryl-2,3-epoxy acylates and its generality for the rearrangement of epoxides such as the 3 -aryl-, 3-vinyl-, and 3-alkynyl-2,3-epoxy acylates via cation intermediates formed by low activation energy (Scheme 1). We then applied this novel construction method to a chiral benzylic quaternary carbon, leading to the asymmetric synthesis of (S)-(+)-sporochnol A (1) (Figure 1).

Scheme 1

Results and Discussion

Rearrangements of Epoxy Acylates with C3Cation Stabilizer. The reaction of trans-2,3-epoxy-3-methoxyphenyl-2-methylcyclopentyl p-nitrobenzoate $\mathbf{2 a}^{8}$
(6) F or example, see ref 11. For other examples, see: (a) Irie, T.; Suzuki, M.; Kurosawa, E.; Masamune, T. Tetrahedron 1970, 26, 32713277. (b) Ohta, K.; Takagi, M. Phytochemistry 1977, 16, 1062-1063. (c) Suzuki, M.; Kurosawa, E. Tetrahedron Lett. 1978, 2503-2506. (d) Matsuo, A.; Yuki, S.; Nakayama, M. Chem. Lett. 1983, 1041-1042. (e) Blunt, J. W.; Lake, R. J.; Munro, M. H. G.; Phytochemistry 1984, 23, 1951-1954. (f) Crews, P.; Selover, S. J. Phytochemistry 1986, 25, 1847-1852. (g) Matsuo, A.; Yuki, S.; Nakayama, M. J. Chem. Soc., Perkin Trans. 1 1986, 701-710. (h) Kajimoto, T.; Yamashita, M.; Imamura, Y.; Takahasi, K.; N ohara, T.; Shibata, M. Chem. Lett. 1989, 527-530.
(7) F or example, the phenyl group stabilizes the benzylic carbocation; see: Ranu, B. C.; J ana, U. J. Org. Chem. 1998, 63, 8212-8216.

Figure 1. (S)-(+)-Sporochnol A (1).
with various Lewis acids and organic acids was first examined (Scheme 2). The expected rearranged product $3 \mathrm{a}^{9}$ was obtained in 39% by $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and 25% by SnCl_{4}. p -TsOH gave only the allyl alcohol 4a by hydride elimination from the cation intermediate. Other acids such as CSA, $\mathrm{Ph}_{3} \mathrm{CBF}_{4}, \mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$, $\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3} \mathrm{Sc},\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2^{-}}$ $\mathrm{Cu},\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2} \mathrm{Zn},\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{3} \mathrm{TI}$, and BiCl_{3} also gave 4a as the major product without the formation of 3a (by TLC). No reaction occurred using $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Ag}$ or LiCl , and a complex mixture was obtained with TMSOTf (by TLC).
These results are postulated as follows. The reason $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and SnCl_{4} give the rearranged product depends on the nature of the oxygen anion. The strong anionic nature of the oxygen atom in the A intermediates would help the rearrangement. On the other hand, the B intermediates, especially formed by organic acids, tend to give the allyl alcohol as a result of the weak anionic nature of the oxygen atom. An increase in the anionic nature of the oxygen atom is necessary to cause the

Scheme 2

trans-isomer 2a:
$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(3 \mathrm{a}, 39 \%), \mathrm{SnCl}_{4}(3 \mathrm{a}, 25 \%)$, $\mathrm{TsOH}(4 \mathrm{a}$,
quant.), Other acids (4a, major product) (see text)
MABR (3a, 94\%), $\mathrm{Al}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{3}(3 \mathrm{a}, 96 \%), \mathrm{EtAICl}_{2}$ (3a, 96\%)
cis-isomer 2b:
$\mathrm{BF}_{3}{ }^{\bullet} \mathrm{Et}_{2} \mathrm{O}(3 b, 66 \%), \mathrm{SnCl}_{4}(3 b, 69 \%)$,
MABR (3b, 96\%), $\mathrm{Al}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{3}(\mathbf{3 b}, 96 \%), \mathrm{EtAlCl}_{2}$
(3b, 89\%)

[^2]rearrangement reaction from the stable cationic intermediates. If this explanation is correct, the greater ionic nature of the $\mathrm{O}-\mathrm{A}$ bond in the A intermediates makes the rearrangement more preferable.

We then examined the bulky Lewis acid, methylaluminum bis(4-bromo-2,6-di-tert-butylphenoxide) (MABR), ${ }^{10}$ which has a hard AI metal. The ionic nature of the O-AI bond is high, and its bulkiness would strengthen the migratory aptitude of the neighboring alkyl unit. Although MABR is usually used for the rearrangement of trisubstituted epoxides in the literature because of its bulkiness, we presumed that it would sufficiently work for tetrasubstitued epoxides $\mathbf{2 a}$ because of the easy production of the carbocation intermediates as mentioned above. Indeed, the rearrangement of $\mathbf{2 a}$ proceeded smoothly to give 3a in 94\% yield. MABR is recognized as a special Lewis acid for its bulkiness. At present, it is not clear whether this good result depends on the bulkiness of MABR and/or hardness of the AI metal as mentioned before. Therefore, we next studied other aluminum reagents such as $\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right)_{3} \mathrm{AI}^{11}$ and EtAICl_{2} and found that they also work well. The same tendency was observed in the reactions of the cis-isomer $\mathbf{2 b}$, and all of the aluminum reagents gave good results. This means that the bulkiness of the aluminum reagents is not very important for these types of epoxides that produce the cation intermediates with a low activation energy, but the ionic nature of the $\mathrm{O}-\mathrm{Al}$ bond in the A intermediate is important.

The specificity of the aluminum metal in the reactions of the epoxides having a cation stabilizing group such as a phenyl group via the stable cation intermediates as mentioned above must be due to the strong ionic nature of the oxygen atom of the $\mathrm{O}-\mathrm{Al}$ bond, which can preferably help the next rearrangement (ionic nature of metal oxygen bond: B-O 43\%; Sn-O 51\%; AI-O 63\%). ${ }^{12}$

To prove this assumption, we next examined the reactions of the trans-2,3-epoxy acylates containing a C3carbocation stabilizer such as the vinyl or alkynyl groups (5a and 5b). The same tendency as before was observed. For these epoxides, although a complex mixture was obtained by MABR, treatment of $\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right)_{3} \mathrm{Al}$ or EtAICl 2 gave the expected results, and the rearranged products $\mathbf{6 a}$ and $\mathbf{6} \mathbf{b}^{9}$ were obtained in good yields, respectively. Thus $\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right)_{3} \mathrm{Al}$ proved to be the best Lewis acid of choice. For comparison, the results obtained by $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and SnCl_{4} are shown together (Scheme 3).

Table 1 shows the results of the reactions of several 2,3-epoxy acylates having a C3-carbocation stabilizer. The trans- and cis-phenyl substituted compounds $\mathbf{2 a - f}$, two of which, $\mathbf{2 e}$ and $\mathbf{2 f}$, are six-membered compounds, the trans- and cis-vinyl and alkynyl compounds $\mathbf{5 a}, \mathbf{b}$ and $\mathbf{7 a}, \mathbf{b}$ were examined, and $\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right)_{3} \mathrm{Al}$ afforded the rear-

[^3]
Scheme 3

6a, 6b
5a: MABR (-), $\mathrm{Al}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{3}$ (82\%), EtAICl_{2}
(61%), $\mathrm{BF}_{3}{ }^{\bullet} \mathrm{Et}_{2} \mathrm{O}(27 \%), \mathrm{SnCl}_{4}(46 \%)$
5b: MABR (-), $\mathrm{Al}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{3}(69 \%), \mathrm{EtAICl}_{2}$
(57\%), $\mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}$ (trace), $\mathrm{SnCl}_{4}(42 \%)$
ranged products in moderate to good yields in every case. ${ }^{9}$ For comparison, the results obtained by $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and SnCl_{4} are shown together, and it is revealed that the general superiority of $\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right)_{3} \mathrm{Al}$ over other Lewis acids occurs in almost all cases. For $\mathbf{2 e}$ and $\mathbf{2 f}$, the ringcontracted five-membered products 3 e and $3 f$ were obtained. ${ }^{13}$ The formations of $\mathbf{3 e}$ and $3 f$ are rationalized as follows. For the trans-isomer $\mathbf{2 e}$, the cation intermediate \mathbf{i} with one equatorial and three axial substituents first forms and is equilibrated with the more stable intermediate ii with one axial and three equatorial substituents because of the flexibility of the six-membered ring and long lifetime of the benzylic carbocation. However, the 1,3-diaxial interaction between the phenyl and OPNB groups in i accelerates the rearrangement before reaching sufficient equilibration. The ratio of the products is then different: $\mathbf{3 e}$ (48\%) from intermediate i and $\mathbf{3 f}(18 \%)$ from intermediate ii. On the other hand, the stabilities of $\mathbf{i i i}$ and $\mathbf{i v}$ from the cis-isomer $\mathbf{2 f}$ are almost the same. Both of them have two equatorial and two axial substituents and no 1,3-diaxial interactions between the substituents. They then reach a sufficient equilibration and rearrange to produce almost the same ratio of products 3e and 3f (46\% and 40\%). (Scheme 4; to clarify the above discussion, the ent-trans structure is pictured in Scheme 4).

Asymmetric Synthesis of (S)-(+)-Sporochnol A. (S)-(+)-Sporochnol A (1) was isolated from the Caribbean marine alga Sporochnus bolleanus by Fenical et al. in 1993 and showed a significant feeding deterrence toward herbivorous fish activity. ${ }^{14,15}$

[^4]Table 1. Reaction of Various 2,3-E poxy Acylates with C3-Carbocation Stabilizer and $\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right)_{3} \mathrm{Al}$

a Yields in parentheses are the yields obtained by $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and SnCl_{4}. ${ }^{\text {b }}$ Another rearranged product 9 was also obtained in 42% yield in addition to $\mathbf{3 e}$ and $\mathbf{3 f}$. c Another rearranged product $\mathbf{1 0}$ was also obtained in 23% yield in addition to $\mathbf{3 e}$ and $\mathbf{3 f}$.

Scheme 4

Asymmetric reduction of the enone $\mathbf{1 1}^{16}$ with Corey's reagent ${ }^{17}$ (Scheme5) gave the optically active allyl al cohol 12 (94\% ee), which was recrystallized in hexane to afford the optically pure allyl alcohol (>99\%ee, $[\alpha]^{15} \mathrm{D}-25.9$)..17,18

[^5]Stereoselective epoxidation ${ }^{19}$ gave the cis-epoxy alcohol 13, which was treated under Mitsunobu's condition ${ }^{20}$ with $\mathrm{p}-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$ to give the trans-epoxy p-nitroben-
(17) Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C.-P.; Singh, V. K. J. Am. Chem. Soc. 1987, 109, 7925-7926. The absolute configuration of the secondary al cohol was deduced by referring to the literature and finally determined by synthesizing the natural (S)-(+)-sporochnol A.

Scheme 5

zoate 14. The $\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right)_{3} \mathrm{Al}$ treatment of 14 afforded the rearranged product 15 in 96% yield without loss of chirality. ${ }^{18}$ The LiAlH_{4} reduction of $\mathbf{1 5}$ followed by PhI$(\mathrm{OAc})_{2}$ treatment of the resulting diols (1:1 mixture) gave the dialdehyde 16 in 74\% yield. Selective monoacetalization of 16 with meso-hydrobenzoin in the presence of 0.1 equiv of PPTS afforded the monoacetal 17 , which was methylenated by the Wittig reaction to give 18 in 54\% yield. Deacetalization of $\mathbf{1 8}$ by acetic acid gave the olefin aldehyde 19 in 94% yield. ${ }^{15}$ The Wittig reaction of the aldehyde 19 with isopropenyl triphenyl phosphine and n -BuLi followed by MeMgl treatment of the resulting diolefin by the reported procedure ${ }^{15}$ afforded the optically pure (S)-(+)-sporochnol A (1), whose data (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR) were identical with those reported in the literature. ${ }^{14,15,21}$

Conclusion

We found a remarkable effect by aluminum reagents, especially $\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right)_{3} \mathrm{AI}$, in the rearrangement reactions of the carbocation stabilizer substituted 2,3-epoxy acylates via the stable carbocation intermediates, whereas the usual Lewis acids such as $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and SnCl_{4} do not work well. This will open new directions for the rear-

[^6]rangement reaction of epoxy acylates. Furthermore, we succeeded in applying this method to the synthesis of the optically pure natural sporochnol A in short steps with good yield in each step.

Experimental Section

All melting points are uncorrected. The NMR spectra were measured using 270 or 300 MHz spectrometers with CDCl_{3} as a solvent and SiMe_{4} as an internal standard. Infrared (IR) absorption spectra were recorded as a KBr pellet. All solvents were distilled and dried according to standard procedures.
$\mathrm{Al}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{3}$ Treatment of 2,3-E poxy Acylates (Table 1). trans-3-Methyl-3-[4-(methoxy)phenyl]-2-oxacyclopentyl 4-Nitrobenzoate (3a). Me3Al (n-hexane solution, 0.19 mmol) was added dropwise to a solution of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}$ (105 mg , $0.57 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.9 \mathrm{~mL})$ at ambient temperature under N_{2}, and the resulting solution was stirred for 1 h . A solution of 2a ($69.7 \mathrm{mg}, 0.19 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL})$ was added dropwise to the mixture at $0^{\circ} \mathrm{C}$, and the solution was stirred for 15 min at the same temperature. After completion of the reaction (checked by TLC), the reaction mixture was quenched by aqueous oxalic acid and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by SiO_{2} column chromatography using hexane-AcOEt (3/1) as the eluent to give 3a (67.0 mg , 96\%). Light yellowish crystals; mp 145-147 ${ }^{\circ} \mathrm{C}$ (hexane-AcOEt); IR (K Br) 1755, 1732, 1532, $1267 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.50(\mathrm{~s}, 3 \mathrm{H}), 2.08-$ $2.58(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 5.53(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}), 6.89(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.29(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 8.26(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0$ $\mathrm{Hz}), 8.31(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 25.0,26.3$, 33.1, 49.9, 55.3, 76.8, 114.1, 123.5, 126.9, 131.0, 134.7, 134.8, 150.7, 158.5, 163.9, 212.7. Anal. Cal cd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{6}$: $\mathrm{C}, 65.03$; H, 5.19; N, 3.79; O, 25.99. Found: C, 64.99; H, 5.31; N, 3.75; O, 25.95 .
cis-3-Methyl-3-[4-(methoxy)phenyl]-2-oxacyclopentyl 4-Nitrobenzoate (3b). By the same procedure as for 3a, 3b ($40.1 \mathrm{mg}, 95 \%$) was obtained from $\mathbf{2 b}(42.1 \mathrm{mg}, 0.11 \mathrm{mmol}$), $\mathrm{Al}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{3}\left(0.12 \mathrm{mmol}\right.$ prepared from 0.12 mmol of $\mathrm{Me}_{3} \mathrm{Al}$ and
0.36 mmol of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL}, 1 \mathrm{~mL})$. Theeluent for SiO_{2} column chromatography was hexane-AcOEt (3/1). Yellowish oil; IR (KBr) 1755, 1732, 1532, $1296 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.91-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.59(\mathrm{~m}, 1 \mathrm{H})$, $2.71-2.74(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 5.49-5.55(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.32(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 8.17(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9$ $\mathrm{Hz}), 8.27(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 26.3,26.6$, 33.0, 51.0, 55.2, 75.8, 114.1, 123.5, 127.4, 131.0, 133.2, 134.7, 150.7, 158.5, 163.9, 213.4. Anal. Cal cd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{6}$: $\mathrm{C}, 65.03$; H, 5.19; N, 3.79; O, 25.99. Found: C, 64.81; H, 5.21; N, 3.78; O, 26.2.
cis-3-Methyl-2-oxo-3-phenylcyclopentyl 4-Nitrobenzoate (3c). By the same procedure as for 3a, 3c ($49.9 \mathrm{mg}, 99 \%$) was obtained from 2c $(50.4 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{Al}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{3}(0.150$ mmol prepared from 0.15 mmol of $\mathrm{Me}_{3} \mathrm{Al}$ and 0.45 mmol of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.5 \mathrm{~mL}, 1 \mathrm{~mL}\right.$). The eluent for SiO_{2} column chromatography was hexane-AcOEt (5/1). Light yelIowish oil; IR (KBr) 1755, 1732, 1539, 1267, 1123, $1107 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.91-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.78$ (m, 2H), 5.53 (dd, $1 \mathrm{H}, \mathrm{J}=10.1,8.2 \mathrm{~Hz}), 7.27-7.42(\mathrm{~m}, 5 \mathrm{H})$, 8.17 (d, 2H, J $=9.2 \mathrm{~Hz}$), $8.26(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 26.3,26.5,33.1,51.8,75.8,123.5,126.3,127.1,128.8$, 131.0, $134.8,141.6,150.7,164.0,213.5$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17^{-}}$ NO_{5} : C, 67.25; H, 5.05; N, 4.13; O, 23.58. Found: C, $67.05 ; \mathrm{H}$, 5.14; N, 4.04; O, 23.77.
trans-3-Methyl-2-oxo-3-phenylcyclopentyl 4-Nitrobenzoate (3d). By the same procedure as for 3a, 3d (47.7 mg , 95%) was obtained from $\mathbf{2 d}(50.2 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{Al}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{3}$ (0.150 mmol prepared from 0.15 mmol of $\mathrm{Me}_{3} \mathrm{Al}$ and 0.45 mmol of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}, 1 \mathrm{~mL})$. The eluent for SiO_{2} column chromatography was hexane-AcOEt (5/1). Light yelIowish crystals; mp 102-104 ${ }^{\circ} \mathrm{C}$ (hexane-AcOEt); IR (KBr) 1755, 1732, 1532, 1267, $1134 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.53$ ($\mathrm{s}, 3 \mathrm{H}$), 2.11-2.59 (m, 4H), $5.55(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.0,8.5 \mathrm{~Hz}$), $7.26-7.40(\mathrm{~m}, 5 \mathrm{H}), 8.27(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 8.32(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ 8.9 Hz); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 25.0,26.3,33.0,50.5,76.9,123.5$, 125.7, 127.0, 128.8, 131.0, 134.8, 142.9, 150.7, 163.8, 212.5. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{5}$: $\mathrm{C}, 67.25 ; \mathrm{H}, 5.05 ; \mathrm{N}, 4.13 ; \mathrm{O}, 23.58$. Found: C, 67.05; H, 5.14; N, 4.04; O, 23.71.
trans-2-Acetyl-2-phenylcyclopentyl 4-Nitrobenzoate (3e) and cis-2-Acetyl-2-phenylcyclopentyl 4-Nitrobenzoate (3f). F rom 2e: by the same procedure as for 3a, 3e (47.8 $\mathrm{mg}, 48 \%$) and $3 f(18.0 \mathrm{mg}, 18 \%)$ were obtained from $\mathbf{2 e}$ (100 $\mathrm{mg}, 0.283 \mathrm{mmol}), \mathrm{Al}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{3}(0.283 \mathrm{mmol}$ prepared from 0.283 mmol of $\mathrm{Me}_{3} \mathrm{Al}$ and 0.85 mmol of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.8 $\mathrm{mL}, 1 \mathrm{~mL}$). The eluent for SiO_{2} column chromatography was hexane-AcOEt (10/1). From 2f: by the same procedure as for 3a, 3e ($39.8 \mathrm{mg}, 40 \%$) and $\mathbf{3 f}$ ($46.3 \mathrm{mg}, 46 \%$) were obtained from $2 f(100 \mathrm{mg}, 0.283 \mathrm{mmol}), \mathrm{Al}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{3}(0.283 \mathrm{mmol}$ prepared from 0.283 mmol of $\mathrm{Me}_{3} \mathrm{Al}$ and 0.85 mmol of $\mathrm{C}_{6} \mathrm{~F}_{5}$ $\mathrm{OH})$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL}, 1 \mathrm{~mL})$. Data for 3e: colorless crystals; mp 149-151 ${ }^{\circ} \mathrm{C}$ (hexane-AcOEt); IR (KBr) 1725, 1705, 1532, 1275, 1121, $1105 \mathrm{~cm}^{-1}$; 1 H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.62-$ $2.05(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.59(\mathrm{~m}, 3 \mathrm{H}), 6.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $5.5 \mathrm{~Hz}), 7.21-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.63(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 8.09(\mathrm{~d}$, 2 H , J $=8.9 \mathrm{~Hz}$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.5,25.2,31.5,69.6$, $79.9,123.3,127.5,127.6,128.8,130.2,135.8,137.5,150.2$, 163.8, 207.5. Anal. Cal cd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5}$: C, 67.98 ; $\mathrm{H}, 5.42$; N, 3.96; O, 22.64. Found: C, 67.83; H, 5.44; N, 3.97; O, 22.76. Data for 3 : colorless needles; $m p 149-151{ }^{\circ} \mathrm{C}$ (hexaneAcOEt); IR (KBr) 1725, 1715, 1530, $1277 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.57-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H})$, 2.20-2.37 (m, 2H), 2.71-2.83 (m, 1H), 6.17 (d, 1H, J $=5.2$ $\mathrm{Hz}), 7.30-7.43(\mathrm{~m}, 5 \mathrm{H}), 8.14(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}), 8.30(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=9.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.6,27.3,31.6,33.2,68.5$, 81.2, 123.7, 126.3, 127.7, 129.2, 130.7, 135.3, 138.8, 150.7, 163.9, 205.7. Anal. Cal cd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5}$: C, $67.98 ; \mathrm{H}, 5.42 ; \mathrm{N}$, 3.96; O, 22.64. Found: C, 67.83; H, 5.44; N, 3.97; O, 22.66.
trans-3-Methyl-2-oxo-3-vinylcyclopentyl 4-Nitrobenzoate (6a). By the same procedure as for 3a, $\mathbf{6 a}(82.4 \mathrm{mg}$, 82%) was obtained from 5 a ($100 \mathrm{mg}, 0.346 \mathrm{mmol}$), $\mathrm{Al}^{(}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{3}$ (0.35 mmol prepared from 0.35 mmol of $\mathrm{Me}_{3} \mathrm{Al}$ and 1.05 mmol of $\left.\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}\right)$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL}, 1 \mathrm{~mL})$. The eluent for SiO_{2} column chromatography was hexane-AcOEt (10/1). White crystals; mp 107-109 ${ }^{\circ} \mathrm{C}$ (hexane-AcOEt); IR (KBr) 1755,

1728, $1522 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30(\mathrm{~s}, 3 \mathrm{H}), 2.01-2.18$ $(\mathrm{m}, 3 \mathrm{H}), 2.51-2.59(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.0 \mathrm{~Hz}), 5.17(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}), 5.46(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 5.89(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $11.0,17.0 \mathrm{~Hz}), 8.23-8.32(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 23.5$, $25.0,30.8,49.8,76.3,114.6,123.5,131.0,134.8,140.2,150.7$, 163.8. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{5}$: C, 62.28; H, 5.23; $\mathrm{N}, 4.84$; O, 27.65. Found: C, 62.21; H, 5.26; N, 4.85; O, 27.68.
trans-3-Methyl-2-oxo-3-(trimethylsilylethynyl)cyclopentyl 4-Nitrobenzoate (6b). By the same procedure as for 3a, $\mathbf{6 b}(42.0 \mathrm{mg}, 69 \%)$ was obtained from $\mathbf{5 b}(60.4 \mathrm{mg}, 0.168$ $\mathrm{mmol}), \mathrm{Al}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{3}(0.168 \mathrm{mmol}$ prepared from 0.168 mmol of $\mathrm{Me}_{3} \mathrm{Al}$ and 0.504 mmol of $\left.\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}\right)$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL}, 1 \mathrm{~mL})$. The eluent for SiO_{2} column chromatography was hexaneAcOEt (15/1). White crystals; mp 99-101 ${ }^{\circ} \mathrm{C}$; IR (KBr) 2164, $1769,1732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.15(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, 1.95-2.02 (m, 1H), 2.14-2.21 (m, 1H), 2.28-2.34 (m, 1H), $2.58-2.60(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 8.22(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $8.7 \mathrm{~Hz}), 8.29(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.37$, 23.6, 25.0, 34.2, 42.4, 75.5, 88.1, 105.8, 123.6, 131.1, 134.7, 150.8, 163.8, 207.7. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Si}: \mathrm{C}, 60.14$; H, 5.89; N, 3.90; O, 22.26; Si; 7.81. F ound: C, 59.98; H, 5.93; N, 3.89; O, 22.16; Si, 8.04.
cis-3-Methyl-2-oxo-3-vinylcyclopentyl 4-Nitrobenzoate (8a). By the same procedure as for 3a, 8a ($94.1 \mathrm{mg}, 94 \%$) was obtained from 7a ($100 \mathrm{mg}, 0.346 \mathrm{mmol}$) and $\mathrm{Al}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{3}(0.350$ mmol prepared from 0.350 mmol of $\mathrm{Me}_{3} \mathrm{Al}$ and 1.05 mmol of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL}, 1 \mathrm{~mL})$. The eluent for SiO_{2} column chromatography was hexane-AcOEt (10/1). Light yellowish crystals; $\mathrm{mp} 78-81{ }^{\circ} \mathrm{C}$ (hexane-AcOEt); IR (KBr) $1755,1732,1532 \mathrm{~cm}^{-1}$; 1 H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.76-$ $1.88(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.48-$ $2.57(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18.0 \mathrm{~Hz}), 5.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.0$ $\mathrm{Hz}), 5.45(\mathrm{dd}, 1 \mathrm{H} . \mathrm{J}=8.0,11.0 \mathrm{~Hz}), 5.79(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.0$, $18.0 \mathrm{~Hz}), 8.24(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 8.30(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.7,25.8,31.1,50.3,75.9,115.1,123.5$, 131.0, 134.8, 139.5, 150.7, 163.9, 212.6. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15-}$ NO_{5} : C, 62.28; H, 5.23; N, 4.84; O, 27.65. Found: C, 62.21; H, 5.26; N, 4.85; O, 27.88.
cis-3-Methyl-2-oxo-3-(trimethylsilylethynyl)cyclopentyl 4-Nitrobenzoate (8b). By the same procedure as for 3a, 8b ($29.3 \mathrm{mg}, 55 \%$) was obtained from 7b ($53.1 \mathrm{mg}, 0.148$ $\mathrm{mmol}), \mathrm{Al}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{3}(0.148 \mathrm{mmol}$ prepared from 0.15 mmol of $\mathrm{Me}_{3} \mathrm{Al}$ and 0.444 mmol of $\left.\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}\right)$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL}, 0.7$ mL). The eluent for SiO_{2} col umn chromatography was benzeneAcOEt (3/1). White crystals; mp $146-148{ }^{\circ} \mathrm{C}$; IR (KBr) 2161, $1765,1728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.16$ ($\left.\mathrm{s}, 9 \mathrm{H}\right), 1.43(\mathrm{~s}, 3 \mathrm{H})$, $1.77-1.85(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.55(\mathrm{~m}, 2 \mathrm{H}), 5.44$ (dd, $1 \mathrm{H}, \mathrm{J}=8.0,11.0 \mathrm{~Hz}), 8.25(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 8.31(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.1,23.2,26.3,34.0$, 43.6, 75.1, 88.0, 105.3, 123.5, 131.1, 134.7, 150.8, 163.9, 207.7. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Si}: \mathrm{C}, 60.14 ; \mathrm{H}, 5.89 ; \mathrm{N}, 3.90$; O, 22.26; Si; 7.81. Found: C, 59.99; H, 5.88; N, 3.88; O, 22.20; Si, 8.05 .

Synthesis of (S)-(+)-Sporochnol A (1) (Scheme 5). (-)-(1R)-2-Methyl-3-[4-(methoxy)phenyl]cyclopent-2-ene-1-ol (12). $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}(2 \mathrm{M}$ in THF, $3.1 \mathrm{~mL}, 6.20 \mathrm{mmol}$) was added dropwise to a solution of (S)-5,5-di phenyl-2-methyl-3,4-propan-1,3,2-oxazaborolidine ($1.72 \mathrm{~g}, 6.21 \mathrm{mmol}$) in THF (40 mL) at $0^{\circ} \mathrm{C}$ under N_{2}. After 30 min of stirring, a solution of the enone $\mathbf{1 1}(1.26 \mathrm{~g}, 6.23 \mathrm{mmol})$ in THF (20 mL) was added slowly to the resulting mixture. After 30 min of stirring, MeOH was added to the mixture. The solvent was removed in vacuo. The residue was purified by SiO_{2} column chromatography using hexane-AcOEt (2/1) as the eluent to give 12 (1.28 g , 92\%; HPLC analysis 94% ee by CHIRALCEL OD, hexane/i$\mathrm{PrOH}=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$), which was recrystalized in hexane to give optically pure 12 (731 mg, 59\%). Light yellowish crystals; mp $66-68^{\circ} \mathrm{C}$ (hexane-AcOEt); IR (KBr) 3400-3200, 1514, 1248, $1036 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.68-$ $1.79(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.44(\mathrm{~m}, 1 \mathrm{H})$, 2.61-2.80 (m, 2H), 3.81 (s, 3H), 4.72 (brs, 1H), 6.89 (d, 2H, $\left.\mathrm{J}=8.9 \mathrm{~Hz}), 7.26(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}\right) ~ \delta 12.9$, 32.6, 33.9, 55.2, 82.2, 113.5, 128.9, 130.3, 134.9, 137.5, 158.4; $[\alpha]^{15} \mathrm{D}-25.9$ (c 1.05, CHCl_{3}); HPLC analysis >99\% ee (CHIRALCEL OD; hexane/i-PrOH = 99/1; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}} 84.3$
\min for optically pure 12, 80.3 and 85.9 min for the racemic one). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 76.44; $\mathrm{H}, 7.90 ; \mathrm{O}, 15.67$. Found: C, 76.49; H, 7.85; O, 15.66.
(+)-(1R ,2R ,5R)-1-Methyl-5-[4-(methoxy)phenyl]-6-oxa-bicyclo[3.1.0]hexane-2-ol (13). A solution of t-BuOOH (dried over MgSO_{4} before use, $68 \%, 1.40 \mathrm{~g}, 10.6 \mathrm{mmol}$) in benzene $(10 \mathrm{~mL})$ was added dropwise to a solution of $\mathbf{1 2}(726 \mathrm{mg}, 3.55$ mmol) and 0.1 equiv of $\mathrm{VO}(\mathrm{acac})_{2}$ in benzene $(20 \mathrm{~mL})$ at room temperature under N_{2}. After 1 h of stirring at room temperature, saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added to the mixture. The resulting solution was extracted with AcOEt. The organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by SiO_{2} column chromatography using hexane-AcOEt (1/1) as the eluent to give 13 ($721 \mathrm{mg}, 92 \%$). Colorless needles, mp 102$103{ }^{\circ} \mathrm{C}$ (hexane-AcOEt); IR (KBr) 3500-3300, 1520' 1248 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.99-$ $2.17(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.11-4.17(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $8.9 \mathrm{~Hz}), 7.26(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.1$, $28.4,29.2,55.3,70.6,71.3,76.4,113.7,127.5,128.6,159.1$; $[\alpha]^{22}{ }_{\mathrm{D}}+21.2\left(\mathrm{c} 1.29, \mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 70.89$; H, 7.32; O, 21.79. Found: C, 70.96; H, 7.33; O, 21.71.
(+)-(1R,2S,5R)-1-Methyl-5-[4-(methoxy)phenyl]-6-oxa-bicyclo[3.1.0]hex-2-yl 4-Nitrobenzoate (14). p-Nitrobenzoic acid ($1.06 \mathrm{~g}, 6.34 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{P}(1.65 \mathrm{~g}, 6.29 \mathrm{mmol})$ were added to a solution of $\mathbf{1 3}$ ($691 \mathrm{mg}, 3.14 \mathrm{mmol}$) in toluene (20 mL) at $0^{\circ} \mathrm{C}$ under N_{2}. Diethyl azodicarboxylate (tol uene sol u., $2.70 \mathrm{~mL}, 6.20 \mathrm{mmol}$) was added dropwise to the resulting solution. The mixture was stirred for 0.5 h and then treated with saturated aqueous NaHCO_{3}. The resulting sol ution was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by SiO_{2} column chromatography using hexaneAcOEt (6/1) as the eluent to give trans-epoxy p-nitrobenzoate (+)-14 (1.08 g, 94\%, HPLC analysis >99\% ee (CHIRALCEL OD; hexane/i-PrOH = 97/3; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}} 34.3 \mathrm{~min}$ for optically pure 14, 35.3 and 38.4 min for the racemic one)). Light yellowish crystals; mp 103- $105^{\circ} \mathrm{C}$ (hexane-AcOEt); IR (KBr) 1728, 1532, 1273, 1248, 1117, $1103 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.83-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.46-2.54(\mathrm{~m}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 5.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz}), 6.94(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz})$, $7.36(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 8.21(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 8.32(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=8.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.4,27.4,30.2,55.3,69.1$, 72.0, 79.2, 113.8, 123.6, 127.6, 130.7, 135.4, 150.6, 159.2, 163.9; $[\alpha]^{21}{ }_{D}+81.8$ (c 1.08, CHCl_{3}). Anal. Cal cd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{6}$: C , 65.03; H, 5.19; N, 3.79; O, 25.99. Found: C, 64.93; H, 5.23; N, 3.75; O, 26.09.
(+)-(1S,3R)-3-Methyl-3-[4-(methoxy)phenyl]-2-oxacyclopentyl 4-Nitrobenzoate (15). Trimethylal uminum (0.98 M in n-hexane, $1.40 \mathrm{~mL}, 1.37 \mathrm{mmol}$) was added dropwise to a solution of pentafluoropheno ($777 \mathrm{mg}, 4.2 \mathrm{mmol}$) in dry $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(14 \mathrm{~mL})$ under Ar at ambient temperature, and the reaction mixturewas stirred for an additional 1 h . A solution of $\mathbf{1 4}$ (501 $\mathrm{mg}, 1.37 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ was added to the mixture cooled to $0{ }^{\circ} \mathrm{C}$, and the solution was stirred for 15 min at the same temperature. The reaction mixture was quenched by 1 N HCl , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by SiO_{2} column chromatography using hexane-AcOEt (3/1) as the eluent to give 15 (471 $\mathrm{mg}, 94 \%$, HPLC analysis > 99\% ee (CHIRALCEL OD; hexane/ $i-\mathrm{PrOH}=80 / 20$; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$; $\mathrm{t}_{\mathrm{R}} 44.6 \mathrm{~min}$ for optically pure 15, 44.3 and 82.0 min for the racemic one)). Light yellowish crystals; mp 145-147 ${ }^{\circ} \mathrm{C}$ (hexane-AcOEt); IR (KBr) $1755,1732,1532,1267 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.50(\mathrm{~s}, 3 \mathrm{H})$, 2.08-2.58 (m, 4H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 5.53(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}), 6.89$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.29(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 8.26(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $9.0 \mathrm{~Hz}), 8.31(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 25.0$, $26.3,33.1,49.9,55.3,76.8,114.1,123.5,126.9,131.0,134.7$, $134.8,150.7,158.5,163.9,212.7 ;[\alpha]^{22} \mathrm{D}+144\left(\mathrm{c} 1.25, \mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{6}: \mathrm{C}, 65.03 ; \mathrm{H}, 5.19 ; \mathrm{N}, 3.79 ; \mathrm{O}, 25.99$. Found: C, 64.99; H, 5.31; N, 3.75; O, 25.95.
(-)-(2R)-2-Methyl-2-[4-(methoxy)phenyl]pentane-1,5dial (16). A solution of $\mathbf{1 5}$ ($199 \mathrm{mg}, 0.539 \mathrm{mmol}$) in freshly distilled THF (3 mL) was added dropwise to a suspension of
lithium aluminum hydride ($51.6 \mathrm{mg}, 1.08 \mathrm{mmol}$) in freshly distilled THF (3 mL) under N_{2} at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred for an additional 1.5 h . The mixture was quenched by water and extracted with ether. The organic layer was washed with saturated aqueous Rochelle salt and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was filtered through Celite pad. After concentration in vacuo, crude diol was obtained. The diol was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, and $\mathrm{Phl}(\mathrm{OAc})_{2}(354 \mathrm{mg}, 1.10 \mathrm{mg})$ was charged into the solution at $0{ }^{\circ} \mathrm{C}$ under N_{2}. After 4 h of stirring, saturated aqueous NaHCO_{3} was charged into the mixture, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by SiO_{2} column chromatography using benzene-AcOEt (7/1) as the eluent to give $\mathbf{1 6}$ ($88.4 \mathrm{mg}, 2$ steps 74%). Light yellowish oil; IR (KBr) 1725, 1514, $1256 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.37(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $6.92(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.15(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 9.44(\mathrm{~s}, 1 \mathrm{H})$, 9.67 (s, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.7,28.1,39.0,52.4,55.3$, 114.5, 128.3, 130.4, 159.0, 201.4; [$\alpha]^{20} \mathrm{D}-65.2$ (c 1.45, CHCl_{3}). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 70.89 ; \mathrm{H}, 7.32 ; \mathrm{O}, 21.79$. Found: C, 70.56; H, 7.33; O, 22.11.
(-)-(2R)-4-(4,5-Diphenyl-1,3-dioxolan-2-yl)-2-methyl-2-[4-(methoxy)phenyl]-butanal (17). Pyridinium p-toluene sulfonate ($38.7 \mathrm{mg}, 0.153 \mathrm{mmol}$) and meso-hydrobenzoin (408 $\mathrm{mg}, 1.90 \mathrm{mmol})$ were added to a solution of $\mathbf{1 6}(209 \mathrm{mg}, 0.949$ mmol) in dry toluene (9.5 mL) under N_{2}. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 9 h . After potassium carbonate was charged into the mixture, it was stirred for several minutes, and the resulting mixture was washed with saturated aqueous NaH CO_{3} and extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by SiO_{2} column chromatography using hexane-AcOEt (4/1) as an eluent to give 17 ($269 \mathrm{mg}, 68 \%$). Colorless oil. IR (KBr) 1723, 1514, 1254, $1030 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.82-2.36(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 5.20$ $(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 6.90-7.26(\mathrm{~m}, 14 \mathrm{H}), 9.51(\mathrm{~s}$, $1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.8,28.4,30.4,52.9,55.3,82.2,82.4$, 104.2, 114.4, 126.8, 126.9, 127.2, 127.3, 127.4, 127.5, 128.4, 131.0, 137.1, 137.3, 158.8, 201.9; [$\alpha]^{22} \mathrm{D}-12.1$ (c 1.24, CHCl_{3}); HRMS (FAB) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{4}\left(\mathrm{M}^{+}+\mathrm{H}\right) 418.2099$, found 418.2118. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{4}$: C, 77.86; $\mathrm{H}, 6.78 ; \mathrm{O}, 15.36$. Found: C, 77.51; H, 6.86; O, 15.63.
(+)-(3S)-3-Methyl-3-[4-(Methoxy)phenyl]pent-4-enyl-4,5-diphenyl-1,3-dioxolane (18). n-BuLi (n-hexane solution, $190 \mu \mathrm{~L}, 0.285 \mathrm{mmol}$) was added dropwise to a solution of methyltriphenylphosphonium iodide ($128.4 \mathrm{mg}, 0.318 \mathrm{mmol}$) in freshly distilled THF (1 mL) at $0{ }^{\circ} \mathrm{C}$ under N_{2}, and the mixture was stirred for 1 h at the same temperature. A solution of $\mathbf{1 7}$ ($37.1 \mathrm{mg}, 0.089 \mathrm{mmol}$) in freshly distilled THF $(1.5 \mathrm{~mL})$ was charged into the solution at $0^{\circ} \mathrm{C}$, and the mixture was stirred for additional 1.5 h . The resulting solution was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by SiO_{2} column chromatography using hexane-AcOEt (7/1) as the eluent to give $\mathbf{1 8}$ ($32.7 \mathrm{mg}, 88 \%$). Colorless oil; IR (KBr) 1512, 1250, 1136, $1035 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.44(\mathrm{~s}, 3 \mathrm{H})$, $1.86-2.14(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 5.08-5.20(\mathrm{~m}, 3 \mathrm{H}), 5.29(\mathrm{~s}$, $2 \mathrm{H}), 6.06$ (dd, $1 \mathrm{H}, \mathrm{J}=17.4,11.0 \mathrm{~Hz}), 6.87(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz})$, $6.93-7.24(\mathrm{~m}, 10 \mathrm{H}), 7.30(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 25.2,29.1,35.3,43.4,55.2,82.2,82.3,104.7,111.9,113.5$, 126.8, 126.9, 127.1, 127.2, 127.5, 127.7, 137.2, 137.3, 138.9, 146.8, 157.7; $[\alpha]_{\mathrm{D}}^{20}+0.7$ (c 1.11, CHCl_{3}); HRMS (FAB) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right) 415.2273$, found 415.2274. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{3}$: C, 81.13; $\mathrm{H}, 7.29 ; \mathrm{O}, 11.58$. Found: C, 80.92; H , 7.35; O, 11.73.
(+)-(4S)-4-Methyl-4-[4-(Methoxy)phenyl]hex-5-enal (19). Compound 18 ($40.7 \mathrm{mg}, 0.098 \mathrm{mmol}$) was dissolved in 80% aqueous acetic acid (4 mL), and the solution was refluxed for 1 h . The reaction mixture was neutralized by 2 N NaOH and extracted with ether. The organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by SiO_{2} column chromatography using hexane-AcOEt (5/1) as the eluent to give 19 ($20.1 \mathrm{mg}, 94 \%$).

Colorless oil; IR (KBr) 1725, 1514, $1252 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.97-2.36(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 5.06(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=17.4 \mathrm{~Hz}), 5.13(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.7 \mathrm{~Hz}), 5.97(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $17.4,10.7 \mathrm{~Hz}), 6.85(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.21(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9$ $\mathrm{Hz}), 9.67(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{33} \mathrm{C} N \mathrm{NR}\left(\mathrm{CDCl}_{3}\right) \delta 25.1,32.5,39.9,43.0$, $55.2,112.3,113.6,127.6,138.2,146.2,157.9,202.3 ;[\alpha]^{18} \mathrm{D}+12.1$ (c 1.32, CHCl_{3}). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}: \mathrm{C}, 77.03 ; \mathrm{H}, 8.31$; O, 14.66. Found: C, 77.00; H, 8.40; O, 14.60.
(S)-(+)-Sporochnol A (1). n-BuLi (n-hexane sol ution, 1.00 $\mathrm{mL}, 1.50 \mathrm{mmol}$) was added dropwise to a solution of isopropyltriphenylphosphonium iodide ($684 \mathrm{mg}, 1.58 \mathrm{mmol}$) in freshly distilled THF $(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under N_{2}. The mixture was stirred for 1 h at the same temperature. A solution of $19(64.9 \mathrm{mg}$, $0.298 \mathrm{mmol})$ in freshly distilled THF (8 mL) was charged into the solution at $0^{\circ} \mathrm{C}$, and the resulting solution was stirred for an additional 1 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue on filtration through Celite pad yielded crude O-methyl sporochnol A. Methylmagnesium iodide (ether solution, $7.10 \mathrm{~mL}, 5.96 \mathrm{mmol}$) was added to the solution of the crude O-methyl sporochnol A at $0^{\circ} \mathrm{C}$ under N_{2}, and the sol ution was concentrated in vacuo. The mixture was heated to $180{ }^{\circ} \mathrm{C}$, stirred for 20 min , diluted with ether, and then
quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by SiO_{2} column chromatography using hexane-AcOEt (6/1) as the eluent to give (S)-(+)-sporochnol A (1). Colorless oil; IR (KBr) 3400-3200, 1512, 1441, 1375, 1236, $1178 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.34(\mathrm{~s}, 3 \mathrm{H})$, $1.51(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.86(\mathrm{~m}, 4 \mathrm{H}), 4.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.98-5.09(\mathrm{~m}, 3 \mathrm{H}), 5.99(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.4,10.7 \mathrm{~Hz}), 6.76(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.18(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} N M R\left(\mathrm{CDCl}_{3}\right) \delta$ 17.6, 23.3, 25.0, 25.7, 41.2, 43.7, 111.5, 114.8, 124.7, 127.8, 131.3, 139.7, 147.2, 153.4; [$\alpha]^{20} \mathrm{D}+2.0$ (c 1.13, CHCl_{3}); HPLC analysis >99\% ee (CHIRALCEL OD; hexane/i-PrOH $=95 / 5$; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$; $\mathrm{t}_{\mathrm{R}} 18.69 \mathrm{~min}$ for optically pure $\mathbf{1}, 19.88$ and 31.68 min for the racemic one).

Supporting Information Available: Experimental procedures for the syntheses of the epoxy acylates $\mathbf{2 a}-\mathbf{f}, \mathbf{5 a} \mathbf{a}$, and $\mathbf{7 a , b}$ with spectroscopic and analytical data and acid treatment of epoxy acylates including the spectroscopic and analytical data of the products. This material is available free of charge via the Internet at http://pubs.acs.org.

J 00104328

[^0]: * Tel: +81 6-6870-8225. Fax: +81 6-6879-8229.
 (1) For reviews on the Lewis acid mediated rearrangement of epoxides, see: (a) Parker, R. E.; Isaacs, N. S. Chem. Rev. 1959, 59, 737-799. (b) Rickborn, B. In Comprehensive Organic Synthesis, Carbon-Carbon σ-Bond Formation; Pattenden, G., Ed.; Pergamon Press: Oxford, 1991; Vol. 3, Chapter 3.3, pp 733-775.
 (2) Hanson, R. M.; Sharpless, K. B. J . Org. Chem. 1986, 51, 19221925.
 (3) J ung, M. E.; D'Amico, D. C. J . Am. Chem. Soc. 1995, 117, 73797388 and references therein.
 (4) (a) Fujioka, H.; Kitagaki, S.; Imai, R.; K ondo, M.; Okamoto, S.; Y oshida, Y.; Akai, S.; Kita, Y. Tetrahedron Lett. 1995, 36, 3219-3222. (b) Kita, Y.; Kitagaki, S.; Yoshida, Y.; Mihara, S.; Fang, D.-F.; Fujioka, H. Tetrahedron Lett. 1997, 38, 1061-1064. (c) Kita, Y.; Kitagaki, S.; Yoshida, Y.; Mihara, S.; Fang, D.-F.; Kondo, M., Okamoto, S.; Imai, R.; Akai, S.; Fujioka, H.J. Org. Chem. 1997, 62, 4991-4997. (d) Kita, Y.; Y oshida, Y.; Kitagaki, S.; Mihara, S.; Fang, D.-F.; Furukawa, A.; Higuchi, K.; Fujioka, H. Tetrahedron 1999, 55, 4979-4998.

[^1]: (5) (a) Kita, K.; Kitagaki, S.; Imai, R.; Okamoto, S.; Mihara, S.; Yoshida, Y.; Akai, S.; Fujioka, H. Tetrahedron Lett. 1996, 37, 18171820. (b) We have already observed that the 2-aryl-2,3-epoxy acylates rearrange via the C2-carbocation intermediates as a result of the stabilization ability of the benzylic cations by aromatic rings, and the methoxy group on the aromatic ring makes the formation of the benzylic cation and the rearrangement reaction faster; see: Kita, Y.; Furukawa, A.; Futamura, J.; Higuchi, K.; Ueda, K.; Fujioka, H. Tetrahedron Lett. 2000, 41, 2133-2136. (c) Quite recently we found that the reaction of acyclic 2-aryl-2,3-epoxy acylates proceeded via the C3cleavage of the oxirane ring. However, the intermediates are phenonium ions, which are completely different from the intermediates of eqs 1 and 2 because of the flexibility of the substrates. Kita, Y.; Furukawa, A.; Futamura, J.; Higuchi, K.; Ueda, K.; Fujioka, H. Tetrahedron 2001, 57, 815-825.

[^2]: (8) The procedures to prepare the starting epoxy acylates in this manuscript are presented in the Supporting Information.
 (9) The relative stereochemistry of $\mathbf{3 a}, \mathbf{b}, \mathbf{6 a}, \mathbf{b}, \mathbf{3 c}, \mathbf{d}$, and $\mathbf{8 a}, \mathbf{b}$ was determined as follows. For example, $\mathbf{3 a}$ and $\mathbf{3 b}$ are diastereomers to each other and show different NMR spectra. The NMR spectrum of $\mathbf{3 a}$ does not contain any peaks of $\mathbf{3 b}$ and the mechanistic consideration helped us to determine the relative stereochemistry of 3a and 3b; the starting epoxides $\mathbf{2 a}$ and $\mathbf{2 b}$ have a five-membered ring and the migration of the methyl group occurs on the same side of the fivemembered ring. The relative stereochemistries of the other compounds $\mathbf{6 a}, \mathbf{b}, \mathbf{3 c}, \mathbf{d}$, and $\mathbf{8 a}, \mathbf{b}$ were determined in the same way.

[^3]: (10) For preparation, see: Nonoshita, K.; Banno, H.; Maruoka, K.; Yamamoto, H. J. Am. Chem. Soc. 1990, 112, 316-322. For MABRpromoted epoxide rearrangements, see: (a) Maruoka, K.; Nagahara, S.; Ooi, T.; Y amamoto, H. Tetrahedron Lett. 1989, 30, 5607-5610. (b) Maruoka, K.; Ooi, T.; Y amamoto, H. Tetrahedron 1992, 48, 3303-3312. (c) Maruoka, K.; Murase, N.; Bureau, R.; Ooi, T.; Yamamoto, H. Tetrahedron 1994, 50, 3663-3672. For MABR-promoted rearrangements of epoxy alcohol derivatives, see: (a) Maruoka, K.; Sato, J.; Yamamoto, H.J.Am. Chem. Soc. 1991, 113, 5449-5480. (b)'Maruoka, K.; Sato, J.; Yamamoto, H. Tetrahedron 1992, 48, 3749-3762.
 (11) F or synthetic applications of $\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right)_{3} \mathrm{Al}$, see: (a) Ishihara, K.; Hanaki, N.; Yamamoto, H. J. Am. Chem. Soc. 1991, 113, 7074-7075. (b) Ishihara, K.; Hanaki, N.; Y amamoto, H. Synlett 1993, 127-129.
 (12) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; Chapter 3.

[^4]: (13) Compounds $\mathbf{3 e}$ and 3 f are diastereomers to each other and show different NMR spectra. Compound $3 f$ is same as compound 5 a in ref 5b or compound $\mathbf{7}$ in ref 5c (5a in ref 5b and 7 in ref 5c are the same compound), whose structure was unambiguously determined by X-ray analysis. The structures of $\mathbf{3 e}$ and $\mathbf{3 f}$ were then determined as shown. The reason for the loss of stereocontrol during this reaction is 1) $\mathbf{2 e}$ and $\mathbf{2 f}$ are six-membered compounds that have conformational flexibility, and 2) the benzylic cation intermediates of $\mathbf{2 e}$ and $\mathbf{2 f}$ have a long lifetime. Although the reaction in ref 5b stereosel ectively proceeds, in that case, with the methylene carbon rearranging, it is quite different from this case, where the acyloxymethylene carbon rearranges.
 (14) F or isolation, structure determination, and biological activity, see: Shen, Y.-C.; Tsai, P. I.; Fenical, W.; Hay, M. E. Phytochemistry 1993, 32, 71-75.
 (15) F or the synthesis of natural sporochnol A, see: (a) Kamikubo, T.; Shimizu, M.; Ogasawara, K. Enantiomer 1997, 2, 297-301. For the synthesis of unnatural sporochnol A, see: (b) Takahashi, M.; Shioura, Y.; Murakami, T.; Ogasawara, K. Tetrahedoron: Asymmetry 1997, 8, 1235-1242. (c) Fadel, A.; Vandromme, L. Tetrahedron: Asymmetry 1999, 10, 1153-1162.

[^5]: (16) El-Abbady, A. M.; Doss, S. H. J . Chem. U. A. R. 1986, 11, 35. Bellina, F.; Ciucci, D.; Rossi, R.; Vergamini, P. Tetrahedron 1999, 55, 2103-2112.

[^6]: (18) The ee values of all the optically active compounds were determined by HPLC analysis. (For the allyl al cohol 12: CHIRALCEL OD; hexane/i-PrOH = 99/1; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$. For 15: CHIRALCEL OD; hexane/i-PrOH = 80/20; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$).
 (19) Sharpless, K. B.; Michaelson, R. C. J. Am. Chem. Soc. 1973, 95, 6136-6137.
 (20) Mitsunobu, O.; K imura, J.; Iizumi, K.; Yanagida, N. Bull. Chem. Soc. J pn. 1976, 49, 510-513.
 (21) Optical rotation of the synthetic (S)-(+)-sporochnol A(1) $\left\{[\alpha]^{20} \mathrm{D}\right.$ $\left.+2.0\left(\mathrm{c} 1.13, \mathrm{CHCl}_{3}\right)\right\}$ is different from the reported values $\left\{[\alpha]_{D}{ }^{30}+2.8\right.$ (c 0.9, $\left.\mathrm{CHCl}_{3}\right)^{15 \mathrm{a}}$ and $[\alpha]_{\mathrm{D}}+10.0$ (c 1.0, $\left.\left.\mathrm{CHCl}_{3}\right)^{14}\right\}$, both of which are also different from each other. The optical purity of the synthetic (S)-(+)-sporochnol A (>99\% ee) was determined by HPLC analysis (CHIRALCEL; hexane/i-PrOH = 95/5; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$).

