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a b s t r a c t

The synthesis of novel b-functionalized derivatives of the clinically used photosensitizer Temoporfin has
been achieved by nucleophilic addition reactions to a corresponding diketo chlorin. The b-substituted
dihydroxychlorin products exhibit a strong absorption in the red spectral region, a high singlet oxygen
quantum yield, and were found to be highly effective in in vitro assays against HT-29 tumor cells.

� 2011 Elsevier Ltd. All rights reserved.
Photodynamic therapy (PDT) is a well established modality for
selective destruction of malignant cells. After administration of
the photosensitizer it is locally activated with laser light. Thus,
cytotoxic singlet oxygen is produced resulting in cell damage or
cell death.1 The first generation sensitizers were based on a por-
phyrin core system but their efficacy is limited by the weak absor-
bance in the red spectral region. However, chlorins and other
second generation sensitizers possess significantly stronger
absorptions at longer wavelengths, thus increasing both the effi-
cacy and the depth of effect.2

Chlorins can principally be obtained either by reduction or oxi-
dation of one of the b-pyrrolic double bonds of porphyrins. For in-
stance, simple b-unsubstituted chlorins are synthesized by
reduction with in situ formed diimide.3 However, the resulting
chlorins are oxidation-susceptible and are often not easily
separable from the starting porphyrin and by-products.4 A
b-unsubstituted chlorin is Temoporfin (Foscan�) which carries
meta-hydroxyphenyl groups in meso-positions (Fig. 1). It is a clini-
cally approved photosensitizer in Europe for the palliative treat-
ment of head and neck cancer. An example for the oxidative
functionalization of the porphyrin double bond is the cis-dihydr-
oxylation. Although expensive and very toxic, osmium tetroxide
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has been established as the standard oxidizing agent for the synthe-
sis of such b-dihydroxy-substituted chlorins.5 Other reagents
proved insufficient. We here report the ‘osmium free’ synthesis of
novel b-substituted Temoporfin derivatives6 by nucleophilic addi-
tion reactions to a corresponding diketo chlorin. In addition,
in vitro studies were carried out to preliminarily assess the PDT effi-
cacy of these new chlorins against HT-29 tumor cells.

Our synthetic strategy is related to a route developed by Cross-
ley and co-workers.7 In the present case, this approach involved
preparation of the common dicarbonyl precursor 5. Its synthesis
was accomplished in four steps starting from known porphyrin
18 (Scheme 1). First, selective mononitration and copper complex-
Figure 1. Structure of Temoporfin and its novel derivatives.
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Scheme 1. Synthesis of precursor-chlorin 5.
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ation of porphyrin 1 was achieved in one step using Cu(NO3)2 in a
mixture of acetic anhydride and acetic acid.9 The nitroporphyrin
copper(II)-complex 2 was obtained in 87% yield and subsequently
converted to the 2-hydroxyporphyrin derivative 3 by treatment
with benzaldoxime in a solution of sodium methyl-sulfinylmetha-
nide.10 The following decomplexation of copper(II)-porphyrin 3
using concentrated sulfuric acid in dichloromethane failed11 and
led to sulfonated products. Instead, a 10:1 mixture of trifluoroace-
tic acid and sulfuric acid afforded the copper-free meta-methoxy-
phenyl-substituted porphyrin derivative 4 in 79% yield over two
steps. Finally, oxidation using Dess-Martin periodinane (DMP)11

yielded the diketo chlorin 5 in 67% yield. Thus, porphyrin 1 was
efficiently converted to the diketo chlorin 5 in four steps with an
overall yield of 46% (Scheme 1).

With common precursor 5 in hand, the addition of nucleophilic
agents was investigated. In a first experiment chlorin 5 was reacted
with hexyl magnesium bromide affording the dialkylated chlorin 6
in 53% yield (Scheme 2). No mono-addition product was detected.
Pleasingly, the desired double addition product was formed as a
single diastereoisomer. Selective formation of the presumed
trans-diol is believed to be favored due to steric reasons.12
Scheme 2. Synthesis of Temoporfin derivatives. Reagents and conditions: (a) For the synt
(CF3)2PhMgBr, THF, �45 �C, 3 h, 44%; for the synthesis of product 8: Me3SiCF3/TBAF, TH
We next focused on fluoro-substituted dihydroxy-chlorins for
mainly two reasons: (i) Generally, fluorinated porphyrins exhibit
higher triplet quantum yields13 and singlet oxygen quantum
yields, respectively, and (ii) the substitution with electron-with-
drawing groups in b-position stabilizes the vicinal diol against
pinacol–pinacolone rearrangement.14 We therefore treated dike-
tone 5 with 3,5-bis(trifluoromethyl)phenyl magnesium bromide
and surprisingly only the two-fold addition product 7 was ob-
tained. However, the use of the electron-deficient and very bulky
Grignard reagent led to a reduced yield of only 44% (Scheme 2).
In order to minimize the steric stress we inserted trifluoromethyl
groups directly without any spacer by using the Ruppert–Prakash
reagent CF3SiMe3/TBAF (Scheme 2).15 This reaction afforded a mix-
ture of the dihydroxychlorin and the corresponding trimethylsilyl
ether. After treatment with additional TBAF the clean diol product
8 was isolated in 78% yield.16

Finally, chlorins 6, 7, and 8 were subjected to boron tribromide
mediated cleavage of the phenolic methyl ethers. The correspond-
ing meta-hydroxyphenyl-substituted products 9, 10, and 11 were
obtained in yields of 57–87%.17,18 These b-substituted chlorins
were found to consist of a mixture of atropisomers because the
hesis of product 6: n-HexMgBr, THF, �45 �C, 3 h, 53%; for the synthesis of product 7:
F, �40 �C, 8 h, 78%. (b) 9, 10, 11 BBr3, CH2Cl2, �50 �C, 16 h, 57–87%.



Table 1
Absorption data and 1O2 yield of chlorins 9, 10, and 11a

Sensitizer kmax kmax kmax kmax kmax
1O2

b

e e e e e

9 418 518 544 600 653 0.97
116800 10800 7400 4600 21900

10 412 514 543 592 644 1.56
213300 18300 17800 9000 25000

11 407 518 547 599 653 1.10
166900 15200 15600 7700 27600

a Absorption spectra in acetone [kmax in nm, e in dm3 mol�1 cm�1].
b 1O2 yields (in EtOH) are given relative to 1O2 quantum yield of Temoporfin.
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meta-substituted aryl groups next to the oxidized pyrrolic subunit
are hindered in their rotation and the substituents can point inde-
pendently in the same or opposite directions.

We next investigated the photophysical properties of the syn-
thesized dihydroxychlorins. In Table 1 the absorption data and
the singlet oxygen yields (relative to 1O2 quantum yield of Temo-
porfin) of the novel chlorins 9, 10, and 11 are summarized. Chlorins
9 and 11 possess a high extinction coefficient at 653 nm whereas
the corresponding Q band of chlorin 10 is shifted to 644 nm. The
singlet oxygen yields for compounds 9 and 11 are quite similar
to that of Temoporfin (Table 1). For the trifluoromethyl-substituted
chlorin 10 an increased relative quantum yield of 1.56 was ob-
served (Table 1). Finally, the photocytotoxicity of sensitizers 9,
10, and 11 was evaluated in cell assays against human colon ade-
nocarcinoma cells HT-29 (Fig. 2).19 The assays were carried out
after incubation for 24 h in 10% FCS containing medium and both
the dark and the phototoxicity were determined at two different
sensitizer concentrations (2 and 10 lmol). A laser with a wave-
length of 652 nm at a dose rate of 50 J/cm2 was used as the light
source. The photodynamic activity was compared to the approved
sensitizer Temoporfin. Chlorins 9 and 11 showed phototoxicity at
both concentrations and exhibited a very similar level of activity
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Figure 2. HT-29 cell assays.
as compared to Temoporfin. Chlorin 10 displayed a lower activity
and was only effective at a concentration of 10 lmol. None of the
tested sensitizers showed dark toxicity.

In conclusion, an ‘osmium free’ strategy for the synthesis of b-
functionalized Temoporfin derivatives is presented. The approach
via a common diketo chlorin intermediate gives broad access to
novel b-substituted dihydroxy-chlorins.20 Alkyl-, aryl-, and trifluo-
romethyl groups could be used as nucleophiles and a clean double
addition reaction was observed. Compared to Temoporfin, the b-
substituted sensitizers possess a significantly increased chemical
stability. They exhibit a comparatively strong absorption in the
red spectral region, a high singlet oxygen quantum yield, and were
highly effective in in vitro assays against HT-29 tumor cells.
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