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STRESS DISTRIBUTION IN A TRANSVERSELY
ISOTROPIC BODY WITH A THERMALLY
INSULATING PARABOLIC CRACK
SUBJECTED TO A UNIFORM HEAT FLUX

Yu. N. Podil’chuk and C. M. Passos Morgado

UDC 539.3

An explicit static thermoelastic solution is constructed for an infinite transversely isotropic body containing a
thermally insulating parabolic crack in the plane of isotropy. The surface of the crack is free of stress. A
uniform thermal flux is incident on the crack perpendicular to its surface. Formulas are obtained for the stress

intensity factors near the tip of the crack.

We shall consider an infinite transversely isotropic body with a thermally insulating parabolic crack
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in its plane of isotropy.
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The x and y axes are taken to lie in the plane of isotropy. while the z axis is directed along the anisotropy axis. We shall
assume that at a sufficient distance from the crack the body is acted on by a uniform heat flux perpendicular to the plane of the crack.
In solving a problem for the thermally stressed state of this body we shall use a potential-function representation of the

general solution of the equations of steady-state thermoelasticity [1, 2], i.e.,
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and the kj (= [, 4) are constants which depend on the elastic and thermal properties of the material, with
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Here v, and v, are the roots of the characteristic equation
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and A, A", &y, 05, and Cjj denote, respectively, the coefficients of thermal conductivity and thermal expansion along the isotropy

and anisotropy axes, as well as the elastic constants of the transversely isotropic body.

Let us introduce the notation 2= ./V KR Then the functions <Dj(x, ¥, zj) (= 171) and T(x, y, z,) will be harmonic in
the corresponding coordinate systems. We shall construct a solution of the problem with the aid of the potential functions

Dix, v, ) (= 1, 4). Here we shall use the paraboloidal coordinate system [3]
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At the surface of the paraboloid, P; = const. When p; = b, the paraboloid degenerates into the crack (1). Equations (8)

umply that the following equations hold at the crack surface (p; = b):
Bp=fy =Mz =pg = A =hy=Az=A,;=A.
We note also that in the z = O plane outside the crack the paraboloidal coordinates are
By =Hy=U3=ly=b py=p;=p3=py=p;

A=Ay =Ay=hy=h.
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In this problem, the boundary conditions can be written as

T
=0 0.=0 1 =0 1,.=0 (0; =) an

In the z = 0 plane outside the crack the following conditions must be satisfied:

T=0; 6,=0; u=0; v=0 (uj=b). (12)

At a sufficient distance from the crack, there are no mecharical forces and the thermal flux must be equal to

T
5 =2 (pg=2). (13)

Determining the temperature field reduces to finding a solution to the steady-state heat conduction equation for a trans-
versely 1sotropic body:
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with boundary conditions (11)-(13) for the temperature. The solution of this boundary value problem has the form

T=Q1z4X3(p4)+\/;jz4Q. (15)

Here and in the following, we have
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Function (15) obeys Eq. (14) and boundary conditions (12) and (13). From Egs. (11) and (15) we have
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Here and in the following we use the fact that

From Eq. (17) we have

0, =—M(b3-a2)g.

The temperature field is, therefore, described by function (15), where @, is a constant given by Eq. (19).
We shall now determine the thermally stressed state of the body. If there is a linear temperature distribution

in an unbounded homogeneous body, then the displacements in the body will be given by
u =Qhxz, vy =Qlyz w =-;—[1222 -1 (xz +y2)].
Here the constants [, and /, are obtained from the system of equations
(c“ +c,2)ll +opal =81 2030 + 33l =B
In this casc, there are no mechanical stresses in the body, i.e.,
W =60 =60 =) = =V =0,

Gy =0y :

Now let the following temperature distribution exist within the body:

T, = 012,X3(p4)-
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In order to determine the thermally stressed state of the body, we shall use representation (2) of the solution. Here the compo-

nents of the stresses are found using
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The potential function @, determined using Eqgs. (4) and (24) has the form
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where

4= %vi/z k3(a2 —bZ)Q.

It should be noted that for j = 4 function (26) satisfies Eq. (3).
Let us choose potential functions CDj ( =1, 3) of the form
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Here a;, cj, and dj are unknown constants.
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Equations (26) and (28), together with Eq. (2), imply that
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from Egs. (29) we obtain

uy =0; v, =0 for uj=b.
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From Egs. (25), (26), (28), and (24), we find the stress components to be
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Here we have taken a4 = d, = 0.
We shall now determine stress (33) at the surface of a parabolic crack (pj = b). Here we assume that
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and Eqgs. (34), we find (pj =b)
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Equations (36) and boundary conditions (11) imply that
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We also give the values of the stresses at the z = 0 plane outside the crack, i.e., for w=>b,
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The stressed-deformed state of a transversely isotropic body with a thermally insulating parabolic crack acted on by a
uniform thermal flux (13) is, therefore, given by the sum of the displacements in Egs. (21) and (29):

u=u +uy, v=vi+vy; w=w; +w,. (39)

These displacements satisfy conditions (12) if algebraic equations (31) are satisfied. The stress components in the body are
given by Egs. (25). with the potential functions (bj (= l,—4) given by Eqs. (26) and (28). Boundary conditions (11) and (12) for
the forces are met if algebraic equations (34) are satisfied. The unknown constants ¢y, ¢5, a,. g, d|, d5. and d; are found using
the system of equations (31), (34), and (37). The constant ¢} is given by Eq. (27).

In solving problems for the limiting equilibrium state of a body with a crack, it is important to know the stress inten-
sity factors, which are found using the formulas
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where 6, T, and 1, are the components of the stresses along an extension of the crack into the xy plane; / is the distance to

the normal to the edge of the crack; n and n,, are the direction cosines of the normal to the parabola (pj =u= b), which are cal-
culated using the formulas
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as well, for the stress intensity factors at the crack tip we find
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We have, therefore, constructed an explicit static thermoelastic solution for an infinite transversely isotropic body con-
taining a thermally insulating parabolic crack in its plane of symmetry. The crack surface is force free. A uniform heat flux is
incident on the crack perpendicular to its surface. Formulas have been obtained for calculating the stress intensity factors.
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