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STRESS DISTRIBUTION IN A TRANSVERSELY 

ISOTROPIC BODY WITH A TIIERMALLY 

INSULATING PARABOLIC CRACK 

SUBJECTED TO A UNIFORM HEAT FLUX 

Yu. N. Podil'chuk and C. M. Passos Morgado UDC 539.3 

An explicit static thermoelastic solution is constructed for an infinite transversely isotropic body containing a 

thermally insulating parabolic crack in the plane of  isotropy. The surface of the crack is free of stress. A 

uniform thermal flux is incident on the crack perpendicular to its surface. Formulas are obtained for the stress 

intensity factors near the tip of  the crack. 

We shall consider an infinite transversely isotropic body with a thermally insulating parabolic crack 

v 2 b 2 
b 2  a 2 + 2 x _  < (b>a_>O) (I) 

in its plane of isotropy. 

The x and y axes are taken to lie in the plane of isotropy, while the z axis is directed along the anisotropy axis. We shall 

assume that at a sufficient distance from the crack the body is acted on by a uniform heat flux perpendicular to the plane of the crack. 

In solving a problem for the thermally stressed state of this body we shall use a potential-function representation of the 

general solution of the equations of steady-state thermoelasticity [ 1, 2], i.e., 

3ql~ 1 3~___~2 3 ~  3 3qb 4 3qb I 3 ~  2 3 ~  + 3qb4. 
u = - 3 x  + 3x + 3y +--~x ; v= 3y + Oy - -3x"  3x ' 

W = kl 3~l  + 3~2 + k 3rI''l 
z - - ~ z  4 3z ' 

where ~j  (j = I, 4) are functions which satisfy the equations 

3 32 3 2 (; :,-:--x); 

(2) 

(3) 

and 

32qb4 = k3T; (4) 
3z 2 

( 32 + 32 +v 02]T 
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and the kj r = 1, 4.) are cons tan t s  which depend on  the elastic and thermal properties of  the material ,  with 

k j= cllvj-ca4 ( j  = 1, 2),  

C13 +C44 

13.(c.,- ~., c,,)+ ~. . (c .  +~.)  
k,= ~(c~ -13,.c~)- 13.(ct~ +c.,) ' 

13 
k 3 = c4zl + k4(c13 +c44) -1~"Cl l  ; 

(6) 

~ = ( C l  I+c12)c t I+c33(X2 ,  ~ '=2CI3tX 1+c330~ 2, [3"=V4,  

2 c ~  ~ '  
V 3 = ~ ,  V 4=- -~ ' .  

Cll -C12 

Here v 1 and v 2 are the roots  o f  the  characterist ic  equa t ion  

C11C44 V- -- r162 +c33cl1 - Cl3 +c44  V +c33c44 = 0 (7) 

and ~., ~.', ct 1, ct 2, and cij denote ,  respectively, the coeff icients  of  thermal conductivity and thermal expansion along the isotropy 

and anisotropy axes, as well  as the  elastic cons tan ts  o f  the transversely isotropic body. 

Let us introduce the nota t ion z = ~r~zj.  T h e n  the functions ~j(x, y, zj) (] = I-~-2) and T(x, y, z 4) will be harmonic in 

the corresponding coordinate  systems.  We shall  cons t ruc t  a solution of  the problem with the aid of  the potential  functions 

Oj(x, y, zj) (j = 1, 4). Here we shall  use the paraboloidal  coordinate sys tem [3] 

( x =  p +It +L 

y -_ l(0  _o2)(,io__ _02) 

(-.oo<~.j<a<ktj<_b<pj<oo; j = 1-~). (8) 

At the surface o f  the  paraboloid,  Pj = const .  W h e n  Pj = b, the paraboloid degenerates into the crack (1). Equations (8) 

imply that the fol lowing equa t ions  hold at the c rack  surface (pj = b): 

~1 --'-- P'2 = ~3 ----" ~4  = kl" ~'1 = ~'2 = ~'3 = L4 = ~'' (9) 

We note also that in the z = 0 p lane  outside the c rack  the paraboloidal coordinates are 

P-t = ~2 = ~3 = g'4 = b; Pl = 132 = P3 = [34 = P; 

~'l =~ '2  ----~'3 =~ '4  ----~'" (10) 
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in this problem, the boundary conditions can be written as 

aT 
a ~ = o ;  ~ : - - o ;  , ~z=o ;  ~ . - - o  ( p j = b ) .  (11) 

In the z = 0 plane outside the crack the following conditions must be satisfied: 

T = 0 ;  o ' z=0 ;  u = 0 ;  v = 0  (~xj=b). (12) 

At a sufficient distance from the crack, there are no mechanical forces and the thermal flux must be equal to 

aT = o,,). (13) 

Determining the temperature field reduces to finding a solution to the steady-state heat conduction equation for a trans- 

versely isotropic body: 

02T a2T a2T 
+ .-~-~- + -z--5- = 0 (14) 

ax 2 ay az~ 

with boundary conditions (11 )-(13) for the temperature. The solution of this boundary value problem has the form 

T=Q, z4X3(94)+.~4 z4Q. 

Here and in the following, we have 

= = -  2~(P)+P 2 --a 2 
.~ 2 • I( 2 pap -b-) A(p) 3A(p)[A(9)+p2-b2] 2 

pdp _ I 
X2(Pl=~(o2_a2)A(p ) p2 - a 2  +A(9); 

x23(0) = r 0ep = ~ [ x 3 ( 0 ) -  x2(p)]. 
J A 3(0) 

Function (15) obeys Eq. (14) and boundary conditions (12) and (13). From Eqs. (11 ) and (15) we have 

lim - - ~ - = ~ Q !  lim X 3 ( 0 4 ) - ~ . ,  .~ 2 , , ~ + Q =  

! 1 

(15) 

16) 

17) 
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Here and in the following we use the fact that 

Ox pj(p~_ "~\/ 2 z, r,j)~oj - x~);  

apj  _ yA2(pj )  

- o , ( q  - - �9 

From Eq. (17) we have 

_ z # ( p , )  
-- I "~ 2~l 2 ~'~ 

Ozj Pi|P7 --l ' t i]|Pi --A.] 
(18) 

Q I = - ~ 4 (  b - a - ) Q .  (19) 

The temperature field is, therefore, described by function (15), where Ql is a constant given by Eq. (19). 
We shall now determine the thermally stressed state of the body. If there is a linear temperature distribution 

= zQ (20) 

in an unbounded homogeneous body. then the displacements in the body will be given by 

Here the constants l 1 and b, are obtained from the system of equations 

(c11+c12)/l+cl3l 2=[3; 2c13/1+c33l 2 =[3 '  (22) 

In this case, there are no mechanical stresses in the body, i.e., 

~r!~ ) = vy'~O) -- v:~(]) -- l:(l).w = "tO)x: = "r~Iz ) = 0. (23) 

Now let the following temperature distribution exist within the body: 

To = O1 z4 X3 (134). (24) 

In order to determine the thermally stressed state of the body, we shall use representation (2) of the solution. Here the compo- 

nents of the stresses are found using 

~ ( 2 ) - c  Z (1 + "~)2Oj 

j=l.2 

I + k j  02d/)j 02qb3 
xI~) =c44 Z + c a4 - 

j=1.2.4 C aX~Zj 4V3 3oyez 3 ' 
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1 +kj •2dO.j 02~3 ~'yz-(2) = C44 Z C44 " 
./=1,2.4 C ayOzj ~30"caz3 

02(i::)j 02(::I:)j 02(:r/:)j "~ .02([:)3 . 
o5~2)= s c,, ax- 

" j=,.2.4\ -:--~- +c" 0-7+c'~'  a-7-- J +(c" -~"-) 0 - ~  -~r  

9 2 ") 9 
( 0 - (:[:) j O O j  0-(l:)j ) , O-(I) 3 . J-(c,, 0"(2) = Y  j=l.2,a~,2.a |Cl2-7-~+Ctl-'7-~-+Cl3kj~z2ox oy . - Cl2 ) ~--~Y -[3T' 

"E}r~) 1 C --C12)/2 Z o2(I:)j ~21:y~3 "1-02m~3 / 
�9 : ' ~ (  II a-toBy o)x 2 0-'-~'- J" \ j=1.2.4 

The potential function ~4 determined using Eqs. (4) and (24) has the form 

q I (  zd'c [,3 " 0 4 =  T .~2_b2)A(z)[..4-gz-("c)zr +2z3(x)] . 
Z=~) 4 

where 

. ~ l .  ~ y2 
~.(~) = z - - 2 x -  r  : ~ ( p ~ ) : = j :  

(25) 

(26) 

1 3/* / "~ c 4 ='~vj.- k3~a" -b2)Q. 

It should be noted that forj  = 4 function (26) satisfies Eq. (3). 
Let us choose potential functions ~j  (j = 1, 3) of the form 

*'= 

(27) 

y2 2 ) 
:J + 

2x+ z2 - a  2 + "r 2 _b 2 .~2 

�9 t "cd~ r -z('~)]} (j : I. 2); +d- - -  Z- 

zdz 1, } = --h)] *3 d3Y I'(,r 2 _ ~ 2  ) A(.ci 1'-3 

z=p 3 

Here aj, cj, and dj are unknown constants. 

(28) 
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Given that 

and taking 

from Eqs. (29) we obtain 

Equations (26) and (28), together with Eq. (2), imply that 

u2= ajzjX3(oj)+ cJI(.r2_b2)A(,~)x 
LJ=l._ j=l._.4 

~) 3 " + 3 .  c "rd'r /)x ~ 

j=l,_ "c=9j 

-*~-Y-~-Y JL--o3' 
[ x"~ r "t d'c I ~ r z dx 

v 2 = ~ 2 . j  a j y z j J - ~ - - ~ + - ~  2.~ c.iJtz2 bZ]ktT~ x 
[ j = l . 2  ~ / j=1.2.4 ~ -- ] t / 

__O 3 2 +2z3rz~]-,l V daj a(x)fvd'~ az(r) ]by x~v[z  ) - 3 z  (z)Zj " .1~.. + 
.#=t.-' J "r 

ks t ( ~d~ r'-z'-(~)]+ w2= 2 :v-~,I _~=)~u~m 
j=1.2.4"%/ J { x "1~2 

; a4 = d 4  = 0 .  

I{ ~ 1 ~7[y z(.l:)])~A~TT) I zj  
+ ~_~_o2 = @ k '  "t:=pj 

j=l,2 j=L2.4 

u 2 = 0; V 2 = 0 for Ibl, j = b .  
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From Eqs. (25), (26), (28), and (24), we find the stress components to be 

j=l,2 

(pj ,~ 2 "~-b-) A(pj)Ozj A(pj) ~ J 
-[k3 (c33k4 -V4Cl3 ) - [ ~ ' ] ~ 4  (b 2 - a 2 )Q z4X3(P4); 

(~) ~-~ l+kj [ I ~ [ 1 \  
�9 :(: =~4, 2., - - ~ . ~ 2 q X o t p ~ ) + a 4 x 3 t p i l +  

j=1.2,4 N. - J 

~_~-) +~) ~(o,) ~< + 1 
+ c~_~_.d3[X.~(p3)+ v 93 ()P3] 

~V3 L - " (P3-a2)A(P3) ~)y ; 

'+~J{ ( )  [ () ~vz-(2)=c44 Z ~ 2c jyX 2 pj +a j  yX23 pj + 
j=1,2,4 "X] U 

(P~ ~ j +dj  "~-b-)  A(pj)ay A(pj 
_ _  apj l - - - ~  v a 3 P3 aP3 ayj ..,/v 3 " (p3-a2)A(p3)o-J:~ " 

Here we have taken a 4 = d 4 = 0. 
We shall now determine stress (33) at the surface of a parabolic crack (pj = b). Here we assume that 

Z ( l + k j ) c  j 1 , -, =2-~[k3(c33k4-v4r  ] ~ 4  (b- - a2 )Q ;  
j=l.2 

Z(,+k~)oj =o; Z(,+kj)~ =o 
j=l.2 j=l.2 

Given the limits 

o%[y• + 

1 
z}Pj 29j I 2 v 

-4  +~) Oy (02_:.)2 

z.TP j 1 
b 2 _a 2 " 

(33) 

(34) 

(35) 
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and Eqs. (34), we find (pj = b) 

a (2) = 0 ;  

,,-.,, l+k][" a~ ] 
�9 (2)=c4a ~.j ~|2cjXo(b)+.":v-"~[ 
xz j=1.2.4 qvj L b--a-J 

C44 

Z(2)= 2c4a ~ l+k___j.j( aj 
yz b2_a2  Yj=l~2,4 . ~  ~ b2_a2 

Equations (36) and boundary conditions ( l  l )  imply that 

=..., l+kj  I X. a l+kj  
2X0(b) 2 5  7"~--.. cJ ~ b 2 _a2 2. ,  7-~-. .  aJ 

j=1,2,4 %1 "J j=l,2 3/ "J 

c,]. 

.~_3 (b2 _a2)=0; 

(36) 

Z l+kj  1 X-~ l+k] 
~ c j  02_a2 2.., ~a j=O.  

j=1,2.4 "q "J j=l.2 %/ "3 

We also give the values of  the stresses at the z = 0 plane outside the crack, i.e., for ~j = b, 

('b ~ l + k j [  p 2 _ a 2  
o~.2)=0; z:~ =c~ Z ~ 1 2 c j X o ( O ) + a j X 3 ( o ) + d J  

4E L 

(37) 

+ C~_ d3[X.(p)~ y2 l .]; 

L- ] 

�9 r l+k i r 
- '2)=YC44 Z ---~, [2cjX2(P)+aJ X23(9)+ 
t'YZ j= 1.2,.-i a f ~  

c44 1 
1 __..~33Yd3 (38) 

The stressed-deformed state of a transversely isotropic body with a thermally insulating parabolic crack acted on by a 

uniform thermal flux (13) is, therefore, given by the sum of the displacements in Eqs. (21) and (29): 

u = u 1 + u 2; v = v 1 + v 2; w = w 1 + w 2 . (39) 

These displacements satisfy conditions (12) if  algebraic equations (31) are satisfied. The stress components in the body are 

given by Eqs. (25). with the potential functions Oj (j = 1, 4) given by Eqs. (26) and (28). Boundary conditions (11) and (12) for 

the forces are met if algebraic equations (34) are satisfied. The unknown constants c 1, c 2, a I , a 2, d 1 , d 2, and d 3 are found using 

the system of equations (31), (3,1), and (37). The constant c a is given by Eq. (27). 

In solving problems for the limiting equilibrium state of  a body with a crack, it is important to know the stress inten- 

sity factors, which are found using the formulas 
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K t = 2 ~ l i m - , / ~ c r z ;  
l-~O 

(40) 

where ~z, ~xz, and Ty z are the components of the stresses along an extension of the crack into the xy plane; I is the distance to 
the normal to the edge of the crack; n x and ny are the direction cosines of the normal to the parabola (pj =/Lj = b), which are cal- 
culated using the formulas 

-q•- _ a 2 
Y .x ~ nv-/( )( ) 

- b2_a 2 b2_~. 2 

Given that along the crack contour (pj = #j = b) 

_ - ~ , :  . ( )( ) 2x 0 - _  _+b2; VO= b 2 _ a  2 a 2_~2 ; z0=0" 

and that [4] 

Lmo /:_: -~--~_-_- = (:__:_)- 94. b --a2 1+ - -  , , 

as well, for the stress intensity factors at the crack tip we find 

K 1 =0; 

= L/'-~C~4 FI y...~ ]314 ~'~ l+kj[ [ YO ] - I )  

"": ~~  t ( :_~ 

where 

i 
]-1/4 

, -~ -3/2 So 
/~,,, = -7 -~yoc4 ,~3 (b -  - ~2) I+ ., ( :  _~ 

Z l+kj ~i3[t, 2 2]21k3(c33k4-v4c13)-~'{l+kv 

i=1.2 ~/ I 

F I , + , I I , + < ,  , 

(41) 

(42) 

(43) 

(44) 
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l+~j (l+kt)(l+k-_)4VTll+ZXo(b)]( I l ~ -  l+k~ 
--~-.. dj = k , -k ,  t4VT_ ,j=,._ ~ . ,  j=l,2 ~ "3 

,=.., i+kj 
d~ = 4g,[ l  + 2Xo/b)l _L, --7~- ~J �9 

j=l . .  " ~ J  
(45) 

We have, therefore, constructed an explicit static thermoelastic solution for an infinite transversely isotropic body con- 

taining a thermally insulating parabolic crack in its plane of symmetry. The crack surface is force free. A uniform heat flux is 

incident on the crack perpendicular to its surface. Formulas have been obtained for calculating the stress intensity factors. 

REFERENCES 

1. 

2. 

3. 
4. 

Yu. M. Kobzar', "Representation of a solution of the static thermoelastic equations for a transversely isotropic body," 

in: Proc. Xl-th Scientific Cot~ of Young Sc&ntists of the Institute of Mechanics of the Ukrablian Academy of Sciences 
[in Russian], Kiilov, May 27-30 (1986), Deposited in VINITI July 28, 1986, No. 5507-V, pp. 492--495. 

H. A. Elliott, "Three-dimensional stress distributions in hexagonal aeolotropic crystals;" Proc. Cambr. Soc., 44, 522-533 

(1948). 
P. M. Morse and H. Feshbach, Methods of Theoretical Physics, in two volumes, McGraw-Hill, New York (1953). 

Yu. N. Podil'chuk, "Stressed state of a transversely isotropic medium with a parabolic crack," Prikl. Mekh., 30, No. 7, 

3-7 (1994). 

3624 


